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Abstract

Background: To achieve a high yield of terpenoid-based therapeutics, 1-deoxy-d-xylulose-5-phosphate (DXP)
pathway has been significantly exploited for the production of downstream enzymes. The DXP synthase (DXS)
enzyme, the initiator of this pathway, is pivotal for the convergence of carbon flux, and is computationally studied
well for the industrially utilized generally regarded as safe (GRAS) bacterium Bacillus subtilis to decode its vital
regions for aiding the construction of a functionally improved mutant library.

Results: For the 546 sequence dataset of DXS sequences, a representative set of 108 sequences is created, and it
shows a significant evolutionary divergence across different species clubbed into 37 clades, whereas three clades
are observed for the 76 sequence dataset of Bacillus subtilis. The DXS enzyme, sharing a statistically significant
homology to transketolase, is shown to be evolutionarily too distant. By the mutual information-based co-
evolutionary network and hotspot analysis, the most crucial loci within the active site are deciphered. The 650-
residue representative structure displays a complete conservation of 114 loci, and only two co-evolving residues
ASP154 and ILE371 are found to be the conserved ones. Lastly, P318D is predicted to be the top-ranked mutation
causing the increase in the thermodynamic stability of 6OUW.

Conclusion: The study excavates the vital functional, phylogenetic, and conserved residues across the active site of
the DXS protein, the key rate-limiting controller of the entire pathway. It would aid to computationally understand
the evolutionary landscape of this industrially useful enzyme and would allow us to widen its substrate repertoire
to increase the enzymatic yield of unnatural molecules for in vivo and in vitro applications.
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Introduction
Isoprenoids constitute the largest class of structurally and
functionally diverse secondary metabolites and encompass
more than 55,000 known compounds [1, 2]. These com-
pounds have been traditionally deployed for the synthesis
of aromatic, flavoring, and pharmaceutical molecules
[3–8]. To date, plants are the major source of isoprenoid
based bioactive molecules [9, 10], and it has led to an
overexploitation of plants, causing severe environmental
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issues. For example, due to the heavy exploitation of
Taxus wallichiana (Himalayan Yew) for the extraction of
pharmacologically important isoprenoids [11], a 90%
decline has been reported in its population across the
Indo-Nepal Himalayan region and is, therefore, declared
as an endangered species by the international union for
conservation of nature (IUCN) [12]. Therefore, the global
interest has now shifted to produce the isoprenoid based
bioactive molecules from generally regarded as safe
(GRAS) status microbes, such as Bacillus subtilis for
pharmaceutical and nutraceutical applications [13, 14].
Bacillus subtilis produces isoprenoid compounds via 1-
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deoxy-d-xylulose-5-phosphate (DXP) pathway which
recruits seven enzymatic steps for the conversion of
glyceraldehyde 3-phosphate (G3P) and pyruvate into pre-
nyl precursors: Dimethylallyl diphosphate (DMAPP) and
isopentenyl diphosphate (IPP) in a ratio of 1:5 [15], as
shown in Fig. 1. The pathway subsequently leads to the
formation of many biomolecules including carotenoids,
steroids, and ubiquinone. The enzyme 1-deoxy-d-xylu-
lose-5-phosphate (DXP) synthase or DXS (EC 2.2.1.7)
condenses glyceraldehyde-3-phosphate and pyruvate to
synthesize DXP. This enzymatic reaction is the rate-
limiting step and consequently, for an increased biosyn-
thetic production rate of the end-products, a widespread
interest has arisen in its research. Although the enzymes
of the DXP pathway have been discovered two decades
ago and have been studied in several microbes till now;
however, their regulatory mechanism is still elusive. The
DXS is the first enzyme of the DXP pathway belonging to
the transferase family (EC 2.5.1.7). It catalyzes the conden-
sation of G3P and pyruvate into the first intermediate of
the pathway, i.e., DXP [15]. The DXP pathways enzymes,
including DXS, are highly regulated. It has been suggested
that the accumulation of DXS is regulated by other
endogenous proteins, and perturbations of the growth
conditions may affect its expression profile [16]. Besides
playing a vital role in the biosynthesis of vitamin B1 and
B6, it leads to the formation of isoprenoid precursors, and
is thus functionally active at a crucial rate-limiting branch
point of the pathway [17]. In contrast to an overwhelming
orderly count of 2957 and 179,659 entries, existing in the
Swissprot and TrEMBL databases of UniProtKB (May 14,
2020) [18, 19], only two DXS structures belonging to
Escherichia coli (PDB ID: 2O1S) and Deinococcus radio-
durans (PDB ID: 6OUW) could be determined through
X-ray crystallography so far [20]. Besides sharing a high
sequence identity of 45.47% and related catalytic activities,
the two enzymes closely resemble each other (Fig. 2) [22].
To date, a wide range of isoprenoids have been produced
from engineered B. subtilis for nutraceutical applications.
However, the titers achieved till date from B. subtilis are
far less than the ones achieved from E. coli, and it poses a
major difficulty for their industrial scale up. The low yield
of isoprenoids from engineered B. subtilis is a bottleneck
for its industrial application [23]. It has been observed that
DXS is a rate-limiting enzyme of DXP pathway because of
its (i) low solubility; (ii) inhibition by IPP and DMAPP;
and (iii) low turnover number [22]. The gene At3g47450,
homologous to YqeH gene of B. subtilis, has been shown
to regulate the accumulation of DXS in Arabidopsis
thaliana [16]. Further, a negative correlation has been
established between the Clp protease and DXP pathway
enzymes. The Clp protease is also involved in the sporula-
tion phase of B. subtilis [24], in which the biological
production of isoprene decreases drastically [25]. This
shows high endogenous regulation of DXP pathway
enzymes, including DXS in B. subtilis.
The DXS enzyme is highly conserved, and the two

proteins 621-residue 2O1S and 650-residue 6OUW
share a topological similarity of 0.820 for 468 residues,
as represented red and blue in Fig. 2, and their topo-
logical variation is localized across the loop regions and
terminal overhangs. However, the DXS enzyme of Bacil-
lus subtilis and its homologs are still not significantly
explored for improving the catalytic activity. Although
the three domains encoded by DXS share homology with
the E1 subunit of pyruvate dehydrogenase and equiva-
lent domains of transketolase (EC 2.2.1.1), their orienta-
tion is substantially different. The active site of DXS is
present at the interface of domain I and II, unlike trans-
ketolase where it is present in the dimer interface [20].
Moreover, as recently shown, the active site of DXS is
nearly twice the volume of transketolase and pyruvate
dehydrogenase (EC 1.2.4.1) active sites [26, 27], and it
should allow the biosynthesis of bulky molecules, mak-
ing it an interesting target for the directed evolution
methodologies. Hence, a careful scrutiny and dedicated
dataset of homologs are urgently needed to accurately
extract the closest entries to drive such methodologies.
To overcome the limitations and achieve an industri-

ally high-yield (systematic) of isoprenoids from B. subti-
lis, there is an urgent need to computationally engineer
its DXS enzyme. In this regard, the preliminary step is
to screen its evolutionarily closest homologs for selecting
the potent protein sequence(s) from its closest clade and
tracing the highly conserved/variable sites so that a cata-
lytically improved enzyme sequence could be redesigned
through specific mutations proximal to its active site
[28–31]. Due to the overabundant number of bacterial
sequences other than B. subtilis, screening its function-
ally as well as topologically closest sequences is still a
major challenge. A strategic comparative scrutiny thus
becomes mandatory to screen the functionally closest
set of natural variants for Bacillus subtilis.
In correlation with the cladistic divergence of the most

predominant bacterial species Enterobacteriaceae, a non-
redundant sequence dataset for Bacillus subtilis is
constructed. The study focuses on the evolutionary
diversification of the dataset and estimates the average
branch length and topological conservation for all the
resultant clades. It estimates the sequence conservation
for the constructed dataset, and maps the active site
residues within the well-studied representative DXS
structure 6OUW. The co-evolving and hotspot residues
are subsequently localized to analyze their degree of
conservation and the key residues are designated for
mutagenesis. Although it is impossible to explore the
theoretical sequence space of a protein, the study will
help to develop automated algorithms for decoding the



Fig. 1 The MEP pathway. The pathway produces IPP and DMAPP as the 5-carbon building blocks for the biosynthesis of isoprenoids. It
condenses glyceraldehyde 3-phopshate and pyruvate through DXS and forms IPP and DMAPP through six added steps. DMAPP linkage with one
or two molecules of IPP forms monoterpene or sesquiterpene, respectively
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Fig. 2 Structural overlap of DXS structures of Escherichia coli and
Deinococcus radiodurans, showing a structural conservation of 468
residues across the secondary structure elements. The structures are
superimposed and represented through Chimera 1.14 [21]
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functionally crucial sites of a protein. It would aid the
construction of focused mutant library which will have a
significant impact on generating catalytically improved
enzymes in short time frames. Thus, the study is cer-
tainly the need of the hour for computationally evolving
a catalytically improved DXS enzyme sequence with en-
hanced substrate affinity.

Materials and methods
Building the sequence dataset and alignment
Screening the DXS protein in UniprotKB [32], a se-
quence dataset is constructed, as shown in the overall al-
gorithmic flowchart of the study (Fig. 3). As per the
sequence length of functionally similar protein struc-
tures, a robust length filter of 500-750 is deployed to
purge all the functionally variant entries and build the
dataset of 546 sequences (set A). It comprises 12, 11, 2,
2, 1, and 518 sequences from plant, animal, protista, hu-
man, fungi, and bacteria respectively, as enlisted in the
Supplementary Table 1.
For all enzyme design protocols, the first and foremost

challenge is to designate the evolutionarily conserved/
variant regions and decipher the functionally important
residues. For computationally evolving the proteins, it
thus suggests the urgent need of building the evolution-
arily closest sequence cluster and assesses the variation
of sequences across the Bacillus subtilis in correlation
with the most abundant set of proteins. As the bacterial
sequences majorly predominate set A, belonging to the
subfamily Enterobacteriaceae, it is considered to evolu-
tionarily track the sequence divergence more effectively.
Further, as this dataset is found to encode 617-626
residues, and the smaller sequence length is evolutionar-
ily preferred [33], the entries are clustered as per their
lengths to define two subsets set Asmall and set Alarge.
The sequences Q7VRH9.1 and Q8D357.1 are orderly
selected as the representative set A entries for these
subsets.
The 546-set sequence dataset is aligned using ClustalO

server by deploying the default parameters (https://www.
ebi.ac.uk/Tools/msa/clustalo/) [34, 35]. The server aligns
the sequence dataset to derive the distances between the
aligned residues and constructs a guide tree for further
improving the alignment. The resultant sequence profile
should thus yield a more reliable evolutionary relation-
ship between the 546 sequences. To extrapolate the
methodology to Bacillus subtilis, a set of 301 sequences
are likewise retrieved and the redundant hits are purged
through MMSeqs2 protocol [36]. It deploys a three-step
cascaded workflow for mutually aligning the input
sequences on the basis of an ungapped alignment and
sensitive k-mer matching algorithm to yield the entries
scoring higher than a given threshold. Purging the out-
liers, the final 76 sequence dataset (set B) is constructed.
The entries are clustered as per their lengths and their
sequence motifs are evaluated through the multiple EM
for motif elicitation (MEME) server [37]. To confirm the
functional annotation of the sequence dataset before
deploying it for subsequent studies, the top three motifs
of length 6-50 are screened by this online software suite.
As the presence of signature sequence aids an initial
computational verification of the function, the server in-
creases the functional credibility of the sequence dataset.
It yields 2 subsets, set Bsmall and set Blarge, orderly having
a sequence length of 619 and 667 respectively, for the
subsequent analysis, and the sequences AJW87412.1 and
WP_007410329.1 are orderly selected as the representa-
tive entries.

Sequence and structural analysis
Several physical and chemical parameters, viz., molecular
weight, amino acid composition, extinction coefficient,
estimated theoretical pI, and grade average of hydro-
pathicity, aliphatic index, and instability index are
important to estimate the physiochemical properties and
topological features of a protein sequence. For the
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representative sequences of both datasets, the features
are estimated through ProtParam (https://web.expasy.
org/ProtParam) [38].
PSIPRED [39] is deployed to predict the three-state

secondary structure for the selected representative
sequences. It provides information corresponding to α-
helices, β-sheets, coils, transmembrane helices, signal
peptides, membrane interactions, re-entrant helix, and
putative domain boundaries. For the representative se-
quences, the TMHMM server (http://www.cbs.dtu.dk/
services/TMHMM/), based on the transmembrane
hidden Markov model, is subsequently used to predict
the integral transmembrane helices and discriminate be-
tween the soluble and membrane proteins [40]. Besides
estimating the number of transmembrane helices, it
predicts the expected number of transmembrane helix
residues for the selected protein sequence [38].
Evolutionary analysis
A phylogenetic tree is an estimate of the relationships
among taxa/sequences and their hypothetical common
ancestors. Most molecular phylogenetic trees estimate
the statistically significant relationships among the spe-
cies/sequences [41]. Molecular evolutionary genetics
analysis (MEGA) is one such widely deployed tool to
measure evolutionary distance among the sequences
[42]. MEGA X is used to construct the interactive evolu-
tionary trees for the datasets A and B. The constructed
trees are visualized using the interactive tree of life
(iTOL) server (https://itol.embl.de/) [43]. It is used to
analyze the evolutionary relationships across the se-
quence datasets and distinctly highlight the species.
Fig. 3 Algorithmic flowchart for the analysis from sequence dataset to fun
Crucial residues for functional mutagenesis and directed
evolution
DXS is an essential enzyme of the pathway and its
expression is very rigidly controlled by the bacteria.
Making its active site open to a variety of substrates will
thus be phenomenal in increasing its productivity. To
study the key substrate-binding residues, the experimen-
tally solved structure, closest to the constructed se-
quence dataset of the functionally similar homologs of
Bacillus subtilis, is screened from the PDB database
through HHPred [44]. To functionally characterize and
confirm the derived dataset, a MEME server is used to
search and identify the previously unidentified motifs in
the sequence dataset [37]. The motif length of 6-50 is
used to localize the top three motifs.
The retrieved structure is subsequently fed to CASTp

[45] for mapping the active site residues, lining the
cavity. For localizing the conserved residues and their
degree of conservation across the active site, Consurf
[46] is deployed, and the average pairwise distance
among the sequences, along with its lower and upper
level, is estimated. For estimating the relative degree of
sequence conservation, the experiment is repeated by in-
cluding the 13 transketolase homologs. Functional diver-
gence within and among these datasets is estimated as
the level of evolutionary distant entries that usually
emerge in such analysis. The functionally conserved and
co-evolving residues are subsequently localized through
the MISTIC approach using the mutual co-evolving in-
formation (MI) of the sequence profile [47]. MI is calcu-
lated between the residue columns and it reflects the
extent of the co-evolutionary impact of one residue at
another position within the MSA. Every node in the
ctional annotation and coevolving residues across the active site

https://web.expasy.org/ProtParam
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resultant network indicates a protein and their linker
edge signifies the statistically significant similarity be-
tween them.

Hotspot regions
A most crucial step of semi-rational directed evolution
strategy is the selection of hotspot loci whose mutations
lead to a significant improvement of the catalytic/bio-
logical activity of the proteins [48]. Hotspots are the sites
where alanine mutations lead to an increase of at least 2
kcal/mol in the binding free energy. To analyze the
mutational landscape and localize the hotspot regions
within/proximal to the active site for the representative
structure 6OUW, the hotspot server [49] is deployed for
studying the functionally crucial and correlated hotspots.
It will provide us a vital dataset to build the dedicated
mutant libraries for the semi-rational directed evolution
of these functionally similar enzymes.
To theoretically investigate the role of the identified

hotspot residues on the biological stability of the repre-
sentative structure 6OUW, their top-ranked missense
mutations are deciphered through Popmusic (http://
dezyme.com/en/software) [50]. On the basis of a linear
combination of environment-specific statistical poten-
tials and solvent accessibility of the mutated residue, it
introduces a point mutation in the structure and
estimates the resultant change in the thermodynamic
stability in terms of ΔΔG score. The combinational as-
sessment corrects its bias toward the destabilizing muta-
tions, which usually impose physical symmetries under
inverse mutations, and increases the robustness of the
protocol [51, 52]. While the solvent accessibility is esti-
mated within the range of 0 (buried) to 100 (fully access-
ible), the mutation effect on the protein stability is
considered stabilizing if ΔΔG < 0. For strengthening the
credibility of predictions, the Maestro server (https://
pbwww.che.sbg.ac.at/maestro/web) is subsequently de-
ployed [53]. On the basis of the statistical energy func-
tions for the sequence and structural topology of the
input protein, it estimates the difference in the folding
free energy of the structure upon mutations along with a
confidence score through multiple linear regression,
SVM, and neural networks [54]. It scrutinizes the stabil-
izing disulfide bonds and free energy change through a
high-throughput scanning of multi-point mutations [53].
Maestro predictions are less biased relative to the group
of inverse mutations [55]. To the best of our knowledge,
no tool suggests the coupled mutations for introducing
the new stabilizing contacts within the structure.

Results and discussion
Sequence and structural analysis
The computational methods aid a swift characterization
and estimation of the functional properties of protein
sequences. The physicochemical properties, viz., pI
value, extinction coefficient, molecular weight, average
hydrophobicity, and instability index are estimated
through the ProtParam server for the representative
sequences of set A and set B to determine their unique-
ness (Table 1), as has been recently shown [48]. Isoelec-
tric point or pI is the pH where the protein molecule
has no net charge. The pI value higher and lower than
7.0 orderly indicates the alkaline and acidic character of
a protein respectively. While the theoretical pI of Bacil-
lus subtilis sequences shows a pI of 5.80-5.91, indicating
the acidic nature, the Enterobacteria sequences display a
significantly higher basic pI of 9.34-9.57. It indicates a
highly narrow range of sequence variation within the
species, and a significantly diverse range of variations
across various species. It has been reported that an in-
stability index score of less than 40 confirms the
structural stability of a protein [37]. The representatives
for set A (Q7VRH9.1 and Q8D357.1) and set B
(AJW87412.1 and WP_007410329.1) exhibit a score
within the range of 30-40 (Table 1), indicating their cel-
lular stability. An interrelation is observed between the
stability and half-life, and the stable proteins manifesting
an in vivo half-life of at least 16 h, are usually expected
to express an aliphatic index of less than 40 [49]. The in-
herent stability of these proteins provides an added
benefit of minimizing the experimental costs and steps,
usually deployed for such studies.
The average extinction coefficient (measured as M−1

cm−1) indicates the quantity of light absorbed at 280 nm,
and it is found to be significantly different for the repre-
sentative set A and set B sequences (Table 1). The score
is dependent on the frequency of cysteine, tryptophan,
and tyrosine residues, and it aids a deeper quantitative
understanding of the interactions against any other pro-
tein/ligand. The aliphatic index is subsequently esti-
mated for these proteins and it indicates a constricted
index range of 79.48-88.74 and 98.98-103.74 for the
Bacillus subtilis and Enterobacteriaceae sequences re-
spectively. The aliphatic index is the relative volume oc-
cupied by the aliphatic amino acids, and the estimations
show a bit lower thermostability for the Bacillus subtilis
sequences. Further, the set A representative sequences
illustrate a diverse range of the grand average of hydro-
phobicity (GRAVY) scores from −0.054 to −0.122, in
contrast to the respective range of −0.149 to −0.269 for
the set B sequences. The negative GRAVY score signifies
the nonpolar nature of a protein molecule. It indicates
the energetically favorable interactions with the hydro-
philic water molecules, and it thus shows that the hydro-
phobic residues are robustly conserved in Bacillus
subtilis sequences [56]. Further, the residue composition
analysis orderly shows a high proportion of glycine,
10.70% and 10.54% for set A (Fig. 4a) and 10.50% and

http://dezyme.com/en/software
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Table 1 Physicochemical parameters, estimated by ProtParam, indicating a substantial variation for certain features

Sequence accession
ID (set)

Amino
acids

Molecular weight
(KDa)

Extinction coefficient
(M−1 cm−1)

Theoretical pI GRAVY
score

Aliphatic
index

Instability
index

Q7VRH9.1 (set A) 617 68.722 64220 9.34 −0.122 98.98 34.64

Q8D357.1 (set A) 626 69.851 56520 9.57 −0.054 103.74 34.09

AJW87412.1 (set B) 619 67.913 53985 5.99 −0.149 88.74 33.30

WP_007410329.1 (set B) 667 72.584 91790 5.13 −0.269 79.48 36.68
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9.6% for set B (Fig. 4b). It indicates that the sequences
encode a very low number of charged residues and
hence, their extracellular solubility should be too low
within the solvent.
PSIPRED is further used to predict the secondary

structure of the representative sequences of the two
datasets (Fig. 5). The secondary structure elements, viz.,
helix, sheet, and coil define a protein structure and play
a key role in the design of various bioanalytical experi-
ments. A residue fraction of 42.78% and 13.12% orderly
defines the helical and stranded substructure of
Q7VRH9.1, in contrast to the respective proportion of
43.61% and 12.93% for Q8D357.1. For set B also, a frac-
tion of 43.29% helix and 12.76% strand residues are
encoded in AJW87412.1 in comparison to the respective
proportion of 43.62% and 11.69% for WP_007410329.1.
Fig. 4 Variation of residue frequencies between the representative sequen
the two datasets, belonging to Enterobacteriaceae and Bacillus species resp
for a few residues within and between the two datasets
It suggests a substantial predominance of the helical res-
idues within this class of proteins. The transmembrane
helical regions are further localized for the representative
sequences through TMHMM, and sequences Q7VRH9.1
and Q8D357.1 are found to respectively encode a frac-
tion of 0.863 and 3.647 transmembrane helical residues
(Fig. 6), in contrast to the respective proportion of
0.13269 and 2.12531 of the set B sequences AJW87412.1
and WP_007410329.1.

Evolutionary analysis
Screening the DXS protein in UniprotKB [32], it results
in 551 sequences with sequence length ranging from 519
to 741. The sequence length range of the dataset varies
from 106-684 and a large majority (84.615%) is found to
be within 600-700. Purging the functional outliers, it
ces Q7VRH9.1 and Q8D357.1 and AJW87412.1 and WP_007410329.1 of
ectively. A substantial variation in the residue percentages is observed



Fig. 5 PSIPRED based estimation of the secondary structure for the representative sequences (a) Q7VRH9.1, (b) Q8D357.1, (c) AJW87412.1, and (d)
WP_007410329.1 of the two sets A and B
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yields 546 sequence dataset whose alignment is fed to
MEGA X to derive the evolutionary relationship.
Although computing an evolutionarily optimal tree top-
ology is termed to be an NP-hard combinatorial
optimization problem [57], the maximum likelihood
method [58] has been well proven to yield the robustly
accurate results for the sequence dataset than the other
methods [59, 60] and is therefore deployed to infer the
phylogenetic history of the dataset. The JTT substitution
matrix [61] is utilized for estimating the evolutionary
distances within the dataset at 4 discrete gamma distri-
bution categories for the residue substitution. Bootstrap
Fig. 6 Prediction of protein transmembrane structure for representative se
and WP_007410329.1
resampling (1000 replicates) [62] is used to assess the ro-
bustness of the groupings. It integrates the replicate
trees for the clustered set of associated taxa into the
bootstrap test to show its percentage next to the
branches. The grouped set of sequences is found to en-
code a substantial sequence similarity in comparison to
the other dataset entries and is expected to share a sta-
tistically significant evolutionary relationship. The tree is
subsequently visualized in the IToL server for analyzing
it further (Fig. 7). As nature tends to decrease the
sequence lengths of proteins for saving the energy re-
quired to synthesize and fold longer proteins [63], the
quences Q7VRH9.1, and Q8D357.1, and AJW87412.1
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shortest sequences of various clades should be priori-
tized to evaluate their evolutionary relationships. For the
inferred 37 clades, three shortest sequences are further
selected to build a new dataset of 108 sequences, and
their functional similarity is confirmed through their
motifs to further evaluate their evolutionary relation-
ships. The resultant tree shows significantly distant asso-
ciations across 37 clades belonging to Leptospiraceae,
Helicobacteriacea, Desulfovibrionaceae, Clostridiacea,
Peptococccacea, Bacillacea, Aphanocthecaceae, Synechoc-
caceae, Mycobacteriaceae, Hominidae, Bacteroidaceae,
Rhodospirillaceae, Rhodobacteraceae, Sphinogomoadace,
Bradyrhizobiaceae, Phyllobacteriaceae, Rhizobiaceae,
Brucellaceae, Bovidae, Ectothiorhodospiraceae, Erwinia-
ceae, Xanthomonadaceae, Monraxellaceae, Pseudomon-
daceae, Francisellaceae, Shewanellaceae, Vibrionaceae,
Pasteurellaceae, Yesiniaceae, Neisseriacea, Rhobocycla-
ceae, Commonadaceae, Burkholderiacea, Morganella-
ceae, Pectobacteriaceae, Enterobacteriaceae, and Murida
species. The log-likelihood and total tree length scores
Fig. 7 Phylogenetic tree of the 546 sequence dataset of DXP synthase. An
is found
for the tree are found to be −56151.89 and 33.750 re-
spectively. Similarly, the tree is constructed for the 76
sequence dataset (set B) and visualized in the IToL ser-
ver. Set B is found to evolve in three distinct clades. The
log-likelihood score and total tree length of its consen-
sus tree solution are found to be −15262.705 and 20.657
respectively. As per the evolutionary trees of set A and
set B, it should be logical to state that these datasets are
divergent, and extending the sequence space to set A
may prove to be incorrect. As speculated, the strategy
has worked well, and despite sharing significant hom-
ology with DXS [64], a set of well-clustered sets of only
13 transketolase is found, as marked with blue squared
boxes in Fig. 8. It clearly indicates clear segregation of
these sequences from the other entries, and further
prioritization of the closest sequence space of DXS [65]
is thus possible from the derived alternative residue
dataset. The derived dataset further indicate a sequence
identity within the range of 42.16-99.84 against 6OUW,
and again proves an evolutionarily significant closeness
average pairwise score of 1.012 within the range of 1.0175 to 2.876



Fig. 8 Phylogenetic tree of 76 sequences of DXP synthase proteins in Bacillus subtilis. The 13 transketolase sequences are marked with blue
squared boxes, and it shows a clear segregation of the two enzymes

Runthala et al. Journal of Genetic Engineering and Biotechnology           (2020) 18:76 Page 10 of 18
of data. Our results thus show a significant evolutionary
diversification of DXS across various species, in contrast
to Bacillus subtilis, and this is crucial to derive a detailed
dataset of the encoded alternative residues for construct-
ing the mutant library.

Crucial residues for functional mutagenesis and directed
evolution
DXS is a very crucial rate-limiting enzyme of the methy-
lerythritol phosphate (MEP) pathway and its expression
is very rigidly controlled by the bacteria. Rather than
modulating the active site, its overexpression has been
widely deployed to increase the bacterial production of
carotenoids [66, 67]. To reliably analyze the active site
for mutagenesis, the experimentally solved structure
closest to the profile of the 63 sequence dataset of B.
subtilis is screened through HHPred. With an E value
and sequence identity of 7.3e−90 and 42% respectively,
the template having PDB ID: 6OUW is found to be the
closest protein structure [68]. For confirming the func-
tional similarity of the constructed 63 sequence dataset
of B. subtilis, the top three motifs are identified through
MEME suite (Fig. 9a). The three potential motifs are
designated as 1, 2, and 3 (Fig. 9b), and motif2 is not
found to demonstrate a statistically significant conserva-
tion score in 4 sequences, including the reference pro-
tein structure. Within the reference structure, motifs 1
and 3 are orderly located between residues 99-148 and
416-465, and appear to play a functionally significant
role in domain1 and domain2 respectively [20]. Against
the reference structure 6OUW, the constructed se-
quence alignment is fed to ESPRIPT3 [69] and it pre-
sents the conservation of only a few residues, scattered
across the chain (Supplementary Fig. S1).
To decode the vital structural residues across the se-

quence profile, CASTp [45] server is used to localize the
active site of the representative structure 6OUW (Fig.
10a). The top-ranked resultant pocket shows a surface
area and volume of 1487.0 Å2 and 3057.5 Å3 respectively.
A set of 61 residues, viz., GLY48, GLY49, LEU50, HIS51,
LEU52, ALA53, SER54, GLY57, ASP79, VAL80, HIS82,
GLN83, LYS101, PHE109, GLY123, HIS124, ALA125,



Fig. 9 a Statistically significant occurrence of tandem motifs within the 63 DXS sequences of Bacillus subtilis, in correlation with the reference structure
6OUW. Motifs 1 and 3 are found statistically conserved across all homologs. b Conservation logo and statistical E value scores of localized motifs
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VAL151, GLY153, ASP154, GLY155, SER156, ASN181,
ASN183, GLU184, THR287, LYS289, ASP310, THR313,
E315, TYR316, VAL317, PRO318, ALA321, SER323,
TRP324, SER325, PRP347, ALA348, MET349, ARG350,
GLN351, GLY352, ASP368, ILE371, GLU373, ILE394,
TYR395, PHE398, ARG401, ASP422, ARG423, VAL427,
ALA429, ASP430, HIS434, PRO479, ARG480, GLY481,
and ASN482 are found lining the active site in between
the domain1 and domain2 regions. While the domain1
is a parallel β-sheet structure of five strands ranging
from residues 1-319, the domain2 is a six-stranded par-
allel β-sheet structure defined by 176 residues (320-495)
[20]. To decipher the most crucial mutations proximal
to this site, the structural conservation is estimated for
the 63 sequence dataset, by considering and excluding
the transketolase sequences against 6OUW through
Consurf [46]. While the former shows an average pair-
wise distance of 0.701 among the sequences, with a
lower and upper bound of 1.017e−07 and 2.442 respect-
ively, the latter set shows an average distance of 0.137
within the range of 1.017e−07-1.040. It confirms the
evolutionarily significant closeness of our constructed
dataset, and the transketolase structures are hereby
shown to have a substantial evolutionary divergence
from DXS sequences. Further, 114 positions LEU30,
ARG38, HIS51, LEU56, VAL59, ALA64, LEU65, ASP74,
ASP79, VAL80, HIS82, GLN83, TYR85, HIS87, LYS88,
LEU90, THR91, ARG93, GLU114, SER115, ASP118,
HIS124, SER126, THR127, SER128, ALA136, ALA138,
ILE152, ASP154, THR158, MET161, ALA162, ALA165,
ASN167, LEU180-NDNEMS-ILE187, ASN190, VAL191,
ALA193, TYR255, ASP260, HIS262, LEU267, PRO280,
HIS284, THR287, LYS289, ALA296, GLU297, ASP299,
HIS304, SER325, ALA336, THR346, ALA348, MET349,
PRO363, ASP368, VAL369, ILE371, ALA372, GLU373,
ALA376, THR378, ALA380, ALA384, PRO390, ALA393,
TYR395, SER396, THR397, PHE398, LEU399, GLN400,
ARG401, TYR403, ASP404, GLN405, HIS408, ASP409,
VAL417, ASP422, ARG423, VAL427, ALA429, ASP430,
THR433, HIS434, ASP439, ARG444, PRO447, PRO454,
ASP456, GLU459, ALA475, ARG477, ARG480, ASN482,
LEU527, ARG536, LYS539, PRO540, ASP542, THR558,
GLU560, GLU574, PRO591, and ASP592 are found to
be completely conserved, 58 constituting domain1 and
46 within domain2, as shown maroon in the color grade
panel of Fig. 10b.
Screening the residues interacting with its natively

bound ligand 2-acetyl-thiamine diphosphate through the
protein-ligand interaction profiler server [70], it shows a
salt-bridge, π-stacking, and hydrophobic bond of 4.66 Å
and 3.61 Å, 3.59 Å and 3.51 Å for HIS82 and LYS289,
PHE398 and VAL80 residues respectively. Moreover,
this ligand is found interacting with SER54, GLY123,
ALA125, GLY153, GLY155, SER156, and ASN183
residues through hydrogen bond within a distance range
of 1.76-3.57 Å. Although Consurf indicates a complete
conservation for all these residues, only VAL80, HIS82,
LYS289, and PHE398 are found lining the active site by
CastP, making an interaction fingerprint. It indicates
that our study correctly extracts all the functionally cru-
cial residues across the active site.
The active site of this enzyme is shown to be highly

conserved [71], and as shown by CastP, the 61-residue
set majorly defines the active site cavity along with the
less conserved proximal residues to make it voluminous.
It thus becomes reasonable to state that several sequence
loci evolutionarily experience a small degree of sequence
modifications, and to further substantiate the function-
ally significant co-evolving residues across the con-
structed sequence dataset, MISTIC algorithm is used
[47]. To discriminate the functionally significant co-
evolving residues and the ones having the phylogenetic
linkage, the resultant statistical scores are adjusted
through the average product correction (APC) [72, 73].
The resultant residue network (Fig. 10c) indicates con-
nections among several residues, and it may emerge due
to factors including the phylogenetically preferred sub-
stitutions and topological stabilization constraints. Exca-
vating it further, 10 positions ASP74, LEU90, SER128,
ASP154, ASN167, ASN190, TYR255, ILE371, THR433,
and PRO447 are found to be completely conserved (Fig.
10d). Moreover, only ASP154 and ILE371 are found to
be the conserved coevolving residues within the active
site. DXS is shown to be highly specific for its substrates
[74] and this study will pave way to increase the promis-
cuity of its active site. The study will certainly be useful
to gather data regarding the functionally crucial residues
for several other functional studies [75–81]. It would
also allow in extracting the evolutionarily closest tem-
plates for the protein sequences and would aid to im-
prove the accuracy of the conventional template-based
protein modeling protocols [82–90]. The strategy would
be significantly useful for improving the algorithmic ac-
curacy of several related research works including pro-
tein modeling [91] and folding [92] and functional
enzymatic characterization [93–100].

Functional hotspots
Hotspot server [34] is used to localize the hotspot
regions within the representative structure 6OUW. Ex-
cluding the buried and the correlated loci, THR7, SER8,
ASP9, ARG47, THR288, LYS291, PRO318, GLU596,
VAL625, and PRO626 appear to be the most flexible res-
idues, and none of these positions are found within the
catalytic pocket. Among the 114 completely conserved
loci, a correlated hotspot is observed between the two
residues, ALA376 and THR378 through an unconserved
residue VAL375 to make an interlinked evolutionarily



Fig. 10 (See legend on next page.)
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Fig. 10 Schematic representation of the active site residues of the representative structure 6OUW. a Active site protein pocket yielded by CastP
[45]. b Conservation profile of Consurf [46], maroon being the most conserved residue. c MI network [47] of the conserved coevolved residues
encoded in 63 DXS sequences. a Labels outward of the second circle represent the residue loci, and the colored square boxes indicate the level
of sequence conservation within the intensity range of low (blue) to high (red). The two internal circles show proximity mutual information and
cumulative mutual information scores respectively. As per MISTIC protocol, the curved central linkers connect residues with statistically significant
MI scores (> 6.5), with red, black, and gray orderly indicating the residue pairs with the top 5% scores, average scores between 70 and 95% and
lowest scores. d Structural localization of the 10 conserved coevolving residues, indicating the most preserved for directed
evolution methodologies
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correlated triad, and ASP422 and ARG423 are also
found to form a correlated set. Although away from the
active site, these residues are likely to have an impact on
the catalytic activity, and this needs to be experimentally
validated for getting further insights.
The PopMuSiC3.1 and MAESTRO servers are used to

assess the functional impact of mutations on the repre-
sentative structure 6OUW. At the first stage, the top-
ranked mutations for the 14 identified hotspot residues
are evaluated. Besides evaluating the ΔΔG score (Kcal/
mol) for the mutations through Popmusic and MAES
TRO protocols, the secondary structure and solvent ac-
cessibility and confidence score of the residue are or-
derly estimated through these two algorithms to predict
the overall effect of a mutation. As shown by Popmusic,
a total of 11 mutations are estimated to have a negative
ΔΔG score (negative score correspond to increased
Table 2 List of predicted top-ranked mutations for the 14 hotspot r

# Residues Top-ranked mutations and scores

PopMuSiC3.1 MAESTR

ΔΔG (Kcal/mol); secondary structure, solvent
accessibility (%)

ΔΔG (Kc
confiden

1 THR7 T7C = −0.11; C, 100 0.718, 0.7

2 SER8 S8C = 0.07; C, 42.11 0.473, 0.8

3 ASP9 D9P = −0.1; S, 87.93 0.352, 0.7

4 ARG47 R47L = −0.76; S, 42.85 0.552, 0.8

5 THR288 T288C = 0.06; C, 53.6 −0.144, 0

6 LYS291 K291R = −0.1; C, 51.9 0.041, 0.8

7 PRO318 P318D = −0.16; C, 59.37 −0.115, 0

8 ALA376 A376Y = −0.33; H, 0 −0.489, 0

9 THR378 T378Q = −0.13; H, 34.15 −0.615, 0

10 ASP422 D422C = −1.28; E, 0 −0.667, 0

11 ARG423 R423Y = −0.26; S, 18.17 −0.190, 0

12 GLU596 E596P = −0.49; C, 50.8 0.063, 0.8

13 VAL625 V625I = 0.45; C, 20.73 −0.058, 0

14 PRO626 P626T = −0.01; C, 96.03 0.200, 0.8
thermodynamic stability). However, MAESTRO indi-
cates a complete agreement for only 5 of these varia-
tions. A value lower than zero indicates the stabilizing
mutation and only mutations 7-11 are found to be
thermodynamically stable (Table 2). Further, Popmusic
is recently proven to be a reliable and robust algorithm
[101], and hence strategically deploying the scores on
the basis of its scores would be more accurate.
Evaluating the 5 top-ranked mutations 7-11, it is ob-

served that all these positions are completely conserved
in the functionally similar sequence profile of the repre-
sentative structure 6OUW. The mutation D422C shows
a ΔΔG score of −1.28 and is predicted to be the most
stabilizing mutation by Popmusic. MAESTRO also con-
firms this prediction and shows the lowest ΔΔG score of
−0.667 with a high confidence score of 0.880. However,
it is found to be a completely buried β-sheet residue
esidues

Crucial sequence/structural property

O

al/mol),
ce score

31 Highly flexible

37 Highly flexible

76 Highly flexible

08 Completely conserved and highly flexible

.933 Highly flexible

80 Highly flexible

.923 Completely conserved, highly flexible

.863 Completely conserved and forms a correlated
hotspot with THR378

.868 Completely conserved and forms a correlated
hotspot with ALA376

.880 Completely conserved and forms a correlated
hotspot with ARG423

.904 Completely conserved and forms a correlated
hotspot with ASP422

90 Highly flexible

.932 Highly flexible

40 Highly flexible



Runthala et al. Journal of Genetic Engineering and Biotechnology           (2020) 18:76 Page 15 of 18
within the active site, and its mutation may prove to be
deleterious. Further, the conserved residues ALA376 and
THR378 are found to form an evolutionarily correlated
triad through an unconserved residue VAL375, and
ASP422 and ARG423 are also found to be correlated
loci. With an orderly solvent accessibility score of 0,
34.15, 0, and 18.17, these positions form the helix, helix,
strand, and structural bend substructure. Hence, for
their crucial role in building the overall conformation,
these positions are predicted to be not the best ones for
a mutagenesis in vitro. Lastly, MAESTRO shows the
highest confidence score of 0.923 for P318D. Popmusic
and MAESTRO algorithms show an orderly ΔΔG score
of −0.16 and −0.115 for this mutation, and it indicates a
satisfactory stabilizing effect. More importantly, although
it is an active site position, it is localized over a coil seg-
ment with a significantly high solvent accessibility of
59.37. Hence, with the highest confidence score of 0.923,
P318D should be the first ideal choice for performing a
mutagenesis. Stabilizing this highly flexible coiled resi-
due would thus impart a structural stability to 6OUW,
as has been planned several times [102–104].

Conclusion
The study performs a sequence and structure-based ana-
lysis of the DXS sequence of Bacillus subtilis in com-
parison to its most prevalent bacterial orthologues. The
pipeline used for the study incorporates evolutionary
analysis of B. subtilis sequences with the other usually
encountered bacterial sequences and transketolase. Se-
quence and structural analysis indicate that only 5 of the
14 identified hotspot positions are completely conserved
and 10 positions are highly flexible. Analysis of the top-
ranked missense mutations for the 14 hotspots through
POPMUSIC and MAESTRO affirm the biological cred-
ibility of only 5 mutations, of which, VAL375, ALA376,
and THR378 form an evolutionarily correlated triad, and
ASP422 and ARG423 are found to be correlated pair.
PRO318 is present in the active site and is one of the
most flexible residues. The P318D mutation indicates a
higher chance of improving the thermostability of DXS.
Since DXS is the most crucial enzyme to direct the
carbon flux toward the biosynthesis of terpenoids in B.
subtilis, the present study might be helpful to develop its
functionally improved variants for improving the micro-
bial production of terpenoid-based flavoring, fragrance,
and therapeutic compounds.
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