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Abstract

Background: Nitroreductases are a family of evolutionarily related proteins catalyzing the reduction of nitro-
substituted compounds. Nitroreductases are widespread enzymes, but nearly all modern research and practical
application have been concentrated on the bacterial proteins, mainly nitroreductases of Escherichia coli. The main
aim of this study is to describe the phylogenic distribution of the nitroreductases in the photosynthetic eukaryotes
(Viridiplantae) to highlight their structural similarity and areas for future research and application.

Results: This study suggests that homologs of nitroreductase proteins are widely presented also in Viridiplantae.
Maximum likelihood phylogenetic tree reconstruction method and comparison of the structural models suggest
close evolutional relation between cyanobacterial and Viridiplantae nitroreductases.

Conclusions: This study provides the first attempt to understand the evolution of nitroreductase protein family in
Viridiplantae. Our phylogeny estimation and preservation of the chloroplasts/mitochondrial localization indicate the
evolutional origin of the plant nitroreductases from the cyanobacterial endosymbiont. A defined high level of the
similarity on the structural level suggests conservancy also for the functions. Directions for the future research and
industrial application of the Viridiplantae nitroreductases are discussed.
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Background
Nitroreductases are a family of closely related proteins
that catalyze the reduction of nitro-substituted com-
pounds, using FMN (Flavin mononucleotide) or FAD
(Flavin adenine dinucleotide) as a cofactor and NADH
(Nicotinamide adenine dinucleotide) or NADPH (Nico-
tinamide adenine dinucleotide phosphate) as a reducing
agent. Nitroreductases are ancient enzymes, with ap-
proximate evolutionary age ~ 2.5 billion years and repre-
sented by more than 26,000 known sequences [19]. In
addition to the nitroreduction reaction, nitroreductases
are known to catalyze a wide range of other reactions
(dehalogenation, dehydrogenation, flavin fragmentation)
and apply a wide range of substrates (metal ions, quin-
one, flavin, nitroaromatic, and enone compounds)
(reviewed in [61]). While nitroreductase enzymes are

widespread and their reactions diversity is well-
characterized, nearly all modern research for has been
concentrated on the proteins of Escherichia coli. Thus,
elucidating the evolutionary relations of the plant nitror-
eductases could facilitate their further research and in-
dustrial application.
Nitroreductases have high potential in their utility in

activating prodrugs in directed anticancer therapies
(reviewed in [61]. Bacterial nitroreductase NfsB (Escheri-
chia coli) was applied with positive clinical outcomes for
the treatment of prostate cancer and brain tumors [45].
Recently, Mycobacterium smegmatis nitroreductase
NfnB was used as a pharmaceutical and chemicals syn-
thesis agent to obtain new compound BTZ043 for the
treatment of tuberculosis [37]. To bioremediate and de-
grade the world-wide use pollutant polychlorinated bi-
phenyl was successfully created transgenic tobacco
plants, expressing nitroreductase bphC gene from Pan-
doraea pnomenusa [44]. Also, nitroreductase NfsA from
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Escherichia coli was successfully used in the biocatalysis
of several nitroaromatic compounds and quinones [56].
The current classification includes two classes of nitror-

eductases: type I (oxygen-insensitive) catalyze the reduc-
tion of organic nitro compounds using a two-electron
transfer mechanism to primary amines [31] and type II
(oxygen-sensitive) catalyzes a one-electron reduction of
the nitro group to produce nitro anion radicals that may
react with oxygen, form superoxide and cause oxidative
stress [48]. In the yeast, Saccharomyces cerevisiae, 2 genes,
frm2 (YCL026c-A) (fatty acid repression mutant) and
hbn1 (YCL026c-B) (homologous to bacterial nitroreduc-
tases), encoding putative nitroreductase-like proteins were
identified by in silico analysis [15]. The biological func-
tions of the yeast nitroreductase family of proteins are not
well studied; however, their possible involvement in oxida-
tive stress responses has been suggested [3]. Experimental
data on Frm2 protein indicate that Frm2 may be involved
in the lipid signalling pathway and cellular homeostasis
[40]. Also, solved crystal structure [52] supports this find-
ing and provides insights into the molecular mechanism
of the yeast Frm2 activity.
Human DEHAL1 (Iodotyrosine dehalogenase 1) is a

well-characterized member of the nitroreductase family
responsible for iodide recycle [26] and thyroid hormone
synthesis [8]. It was shown that nitroreductase and deha-
logenase activities are closely related to the sequence
level [43].
The recent advantage in the sequencing technologies

and genes annotation with an automatic pipeline allows
identifying many genes as “nitroreductase family mem-
ber” in Viridiplantae. Despite the undoubted importance
of the nitroreductases, their characterization in Viridi-
plantae is missing. Thus, although a recent study has
provided a deep insight into the understanding of the
evolution of nitroreductases [1], the evolutional history
of the green lineage nitroreductases has not been ad-
dressed as broadly as in other kingdoms.
In the present work, all currently available genomic re-

sources were used to explore the diversity and the phylo-
genetic distribution of the nitroreductase domain-
containing proteins in Viridiplantae. This study repre-
sents the first step toward understanding the evolution
of the nitroreductase proteins in the green lineage.
Altogether, results of this study could facilitate further
research and industrial application of the Viridiplantae
nitroreductases.

Methods
Identification of the nitroreductases in the Viridiplantae
clade
Nitroreductases were identified with keyword search and
following BLAST (Basic local alignment search tool) [51]
searches in NCBI (National Center for Biotechnology

Information), InterPro 77 [42], Pfam 32.0 [19], and Phy-
tozome 12.1 [21] databases. The consensus sequence of
the nitroreductase domain (PF00881/IPR029479) was
used in on-line BLASTP (Basic Local Alignment Search
Tool Protein) searches. All partial and fragmented se-
quences were eliminated. Presence of the nitroreductase
domain was checked with CD-search (NCBI) [38] and
MOTIF search (KEGG 93) [30] tools with E-value (≤
0.001). Domains, fused to the nitroreductase domain,
were verified with the same tools and threshold.

Multiple sequence alignments and phylogenetic analysis
Nitroreductase domain sequences were extracted from
Pfam database [19] (for proteins with 2 nitroreductase
domains, the sequence of N-terminal one was used) and
multiple sequence alignments were performed with
MUSCLE [18]. The test of substitution models and
phylogenetic analysis were carried out using the MEGA
X software [32]. For maximum likelihood tree [60], the
LG substitution model [34] was selected assuming an es-
timated proportion of invariant sites and 4 gamma-
distributed rate categories to account for rate heterogen-
eity across sites. The gamma shape parameter was esti-
mated directly from the data. Reliability for the internal
branch was assessed using the bootstrapping method
(1000 bootstrap replicates). The same settings with the
JTT substitution model [28] were used for reconstruc-
tion with the Neighbor-Joining [50] method.

Localization prediction and structure modeling
Subcellular localization was predicted with TargetP on-
line tool [20], “Plant Organism group” settings were
used. Model of Arabidopsis nitroreductase (At1G02020)
was built with SWISS-MODEL [59] and matched with
Anabaena variabilis nitroreductase (PDB 3EO7 (https://
doi.org/10.2210/pdb3EO7/pdb)) in Chimera software
[49]. Quality of the created models was verified with
QMEAN [5]. VAST+ was used to search for the struc-
ture similarity [36], iPBA webserver was used for the
pdb structures alignment (https://www.dsimb.inserm.fr/
dsimb_tools/ipba/index.php). The quality of the struc-
tures alignments was evaluated with RMSD and normal-
ized score [55, 64].

Results
Exploring the distribution of nitroreductases in
Viridiplantae
All currently available Viridiplantae species genomes
were checked, and 97 proteins containing nitroreductase
domain (Supplementary Table 1) were identified. Most
nitroreductases are single-domain proteins, containing
only nitroreductase domain, but there are some exam-
ples of nitroreductases with doubled nitroreductase do-
main. In 13 proteins, this additional C-terminal domain
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was significantly above threshold (designated as ×2 in
Supplementary Table 1), in all other cases, the domain
was partial and below a defined threshold. Two proteins
(D7KP50 and A0A2P5WXT2) have N-terminal C2H2-
type zinc finger (in D7KP50) and Myb/SANT-like DNA-
binding (in A0A2P5WXT2) domains (from Arabidopsis
lyrata L. and Gossypium barbadense L., respectively)
that may suggest their additional function as transcrip-
tion factors.
Several recent studies have provided important ad-

vances in our understanding of the structure and distri-
bution of nitroreductases in many species: Bacteria,
Fungi (Oliveira 2007); yeast (Saccharomyces cerevisiae)
(Song 2015); Clostridium difficile (Wang [57]); nematode
Caenorhabditis elegans [14]; mouse (Mus musculus)
[54]; human [25]. However, phylogenetic analysis of
nitroreductases in the whole green lineage (Viridiplan-
tae) is missing.
Genome searches revealed that nitroreductases are

present in the Chlorophyta (green algae) (11 proteins),
mosses (1 protein in Physcomitrella patens Hedw [33].,
liverwort (1 protein in Marchantia polymorpha L. [10],

clubmosses (2 proteins in Selaginella moellendorffii [4].
No nitroreductases were found in Red Algae. Also,
nitroreductase proteins were found in Acrogymnosper-
mae: Wollemia nobilis [47, 62] and Araucaria cunning-
hamii Mudie. (one protein in each). Ancient flowering
plant Amborella trichopoda Baill [2]., Cinnamomum
micranthum (Hayata) [13], and Macleaya cordata Willd
[35]. were containing one nitroreductase protein each,
but three proteins were found in Nelumbo nucifera
Gaertn [41]. Monocotyledons and eudicotyledons were
represented with a higher number of proteins, 10 and 64
respectively (Supplementary Table 1).
To gain insight into the phylogenetic relationships be-

tween nitroreductases from green algae (Chlorophyta)
and land plants (Streptophyta), the robust phylogenetic
tree after multiple alignments of 100 predicted se-
quences (Supplementary Figure 1 and 2) was generated.
Nitroreductases from Cyanobacteria (Anabaena cylin-
drical and Nostoc punctiforme) and Chloroflexi (Chloro-
flexus islandicus) were added as green photosynthetic
bacteria outgroup. As expected, nitroreductases from
Streptophyta and Green algae were clustered in

a b

Fig. 1 a Matched crystal structures of putative nitroreductase from Arabidopsis thaliana (blue) and Anabaena variabilis (PDB 3EO7) (pale pink).
b Closer look at the FMN (in the centre) binding site and Ca2+ ion (green ball)

Table 1 Structural alignment of the Arabidopsis O23673 protein (Locus At1g02020) with nitroreductases with defined structures
from different species

Organism PDB ID Normalized score RMSD GDT TS

Geobacter Metallireducens Gs-15 4DN2 − 204.97 1.67 16.72

Clostridium difficile R20291 5J62 − 277.48 2.75 2.14

Chlorobium tepidum 2R01 − 231.45 1.71 15.53

Ralstonia eutropha jmp134 3HJ9 − 177.6 1.82 20.26

Bacteroides fragilis NCTC 9343 3EK3 − 313.01 2.67 2.73

Vibrio parahaemolyticus RIMD 2210633 5UU6 − 246.08 1.77 15.48

Saccharomyces Cerevisiae 4URP − 230.67 2.4 13.71

Anabaena variabilis atcc 29413 3EO7 130.13 0.73 73.69
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separated branches, with closer relation of Bacterial
nitroreductases to Green algae. Also, high homology on
the level of the family that decreasing dramatically in
higher taxa could be noticed. Thus, this represents the
first description of nitroreductase homologs in Green
Algae and Streptophyta.

Structural models comparison
Structural alignment of the Arabidopsis thaliana chloro-
plasts/mitochondria-localized nitroreductase (O23673)
with different known nitroreductases (Table 1) confirms
results obtained with the phylogenetic tree. In compari-
son to different bacteria and yeast, cyanobacteria Ana-
baena variabilis shown the highest structural similarity
to the nitroreductase from Arabidopsis thaliana (Fig.
1a). It is important to notice, that amino acids, required
for the co-factor (FMN) binding are conserved in cyano-
bacteria and Arabidopsis (Fig. 1b): 98R, 101P, 102S,
188D, 191H, and 334R. These features suggest that plant
nitroreductases are most likely to perform functions,
similar to bacterial. The main difference between plant
and bacterial nitroreductases is the presence of the N-
terminal peptide (1–40 in O23673), required for the
protein translocation to the chloroplasts and/or
mitochondria.
Based on the obtained phylogenetic results and pre-

dominant localization of the plant nitroreductases in
chloroplasts, we could suggest the general line of evolu-
tion from cyanobacteria via endosymbiotic event to the
modern chloroplasts. Overall, our assumption is well-
supported by the modern theory of the chloroplasts and
mitochondria origin from bacterial ancestors [39].

Discussion
In this study, for the first time, predicted nitroreductases
in unexplored eukaryotic Viridiplantae supergroup were
described. As it was shown in previous studies [15, 22]
nitroreductases have very low sequence identity/similar-
ity. This fact may explain why their presence in Viridi-
plantae was overlooked. Based on the ancient nature of
the nitroreductases (approximate evolutionary age ~ 2.5
billion years [58]), wide representation among different
taxa, we assume that nitroreductases are omnipresent
enzymes and also presented in Viridiplantae. Application
of different BLAST search strategies allows to identify
nitroreductases literally in all Viridiplantae species but
mostly with partial nitroreductase domain or below a
threshold value.
Up to date, not much is known about localization of

the nitroreductase activity in mammalian cells. The re-
cently developed fluorescent sensor allows to image sub-
mitochondrial localization of nitroreductase activity in
live HEK 293 cells (human embryonic kidney cells) [53].
Similarly, bacterial nitroreductases, transformed into

plants, have higher activity in case of chloroplast and
mitochondrial localization [65]. Most probably such
localization is connected to the role in oxidative stress
response and regulation of antioxidant enzymes as it was
shown in yeast [3, 16] and detoxification of the photo-
synthesis by-products [7]. Predicted localization of the
defined plant nitroreductases corresponds with this as-
sumption, and majority of proteins were predicted to
have chloroplast and/or mitochondrial localization (Sup-
plementary Table 1). The only exception with no organ-
elle localization is the secreted nitroreductase
(A0A0D2VDD8) from cotton Gossypium raimondii Ulbr.
Most probably, plant nitroreductases are participat-

ing in the oxidative stress, pollutant, and herbicide re-
sponses [7, 65]. Also, some connections to circadian
rhythms or the efficiency of the photosynthetic ma-
chine are possible. In particular, by-products of many
pollutant and herbicide are known to degrade in the
mitochondria and cause the production of the highly
toxic reactive superoxide. The reduction of the super-
oxide is catalyzsed by several families of closely re-
lated reductases localized in the mitochondria and
chloroplasts, like, for example, monodehydroascorbate
reductases [27] and quinone oxidoreductase [6]. Most
probably, plant nitroreductases are also participating
in the superoxide reduction. Also, it is known that
some pollutants could damage photosynthetic appar-
atus and decrease the content of chlorophyll, but
these negative effects are neutralized by the overex-
pression of transgenic bacterial nitroreductase [23],
thus, suggesting photoprotective role.
The main focus of modern nitroreductases research

is oriented on substrate recognition specificity, kinetic
parameters related to prodrug activation or antibiotic
resistance, but missing detailed characterization of
regulatory mechanisms (reviewed by [61]). Based on
available data, bacterial nitroreductases are induced by
oxidative stress or decreases intracellular NAD(P)H to
NAD(P)+ ratio [46]. Expression of the yeast nitrore-
ductases is constitutive and does not depend on the
cell physiological status [16]. Without any experimen-
tal data available, it is hard to predict regulatory
mechanisms for the plant nitroreductases expression
and functioning.
Plant nitroreductases have high potential in indus-

trial application and biotechnology. It is known that
substrate specificity of the nitroreductase could be
changed just by the replacement of a single amino
acid [43]. Thus, it is possible to adjust co-factor bind-
ing site, size, and shape of the substrate-binding
pocket and create an enzyme suitable for degradation
of the nearly any compound [17]. Bacterial enzymes
are not much suitable for such purposes, because they
lack membrane anchor and their localization is not
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specific. Partially, this problem could be solved by
transplastomic transformation, providing production
of the high amount of functional enzyme [65]. From
the other side, this method has several limitations,
mainly: (1) many pollutants are absorbed by roots,
where chloroplastic enzymes are not presented, or
their activity is very low [11]; (2) plastid genes are
greatly downregulated in fruits, where pollutants are
often concentrated [29]; in general, plastid transform-
ation is well-established only in the limited number
of species, but agricultural and industrial plants spe-
cies are rather recalcitrant [9]. Further research in
this area would allow engineering plant species resist-
ant to herbicides and with target phytoremediation
properties.
Interestingly, that comparison of homologs on the level

of protein structures provided a possible evolutional rela-
tion of plant and bacterial nitroreductases (Table 1). Not
surprisingly, the closest bacterial homolog of nitroreduc-
tase for Arabidopsis thaliana (L.) Heynh. (O23673) was
nitroreductases from Anabaena variabilis (3eo7) (Fig. 1).
Most probably that Viridiplantae has obtained nitroreduc-
tase via cyanobacterial endosymbiont [39].
Finally, this study reports the first description of the

nitroreductases in the Viridiplantae supergroup. The low
level of similarity between identified nitroreductases in
Viridiplantae species complicated the phylogenomic ana-
lysis, and it was possible to make only a general overview
of the evolutionary relationships of nitroreductases in
this supergroup. Nitroreductase proteins have been
thought to be absent from photosynthetic eukaryotes al-
though this conclusion was made in rather old studies
[12, 24] without application of modern similarity search
algorithms and when a small number of Viridiplantae
genomes was available.
Based on obtained results, some research directions for

future investigation could be suggested: (1) proper classifi-
cation of the Viridiplantae nitroreductase proteins based
on their biochemical features (type I or II); (2) functional
characterization of the newly defined proteins; 3) how
localization of the nitroreductases (chloroplast, mitochon-
drial, or other) is related to the recognized substrates.
Current attempts to create transgenic plants suitable for
phytoremediation are based on the application of bacterial
nitroreductases [7, 63, 65], although plant nitroreductases
could provide better results. In addition to the application
in the phytoremediation, transgenic plants, overexpressing
nitroreductases could provide significant improvement
during stress adaptation and disease resistance.

Conclusions
The present study reports, for the first time, evolutionary
relation between previously overlooked nitroreductases
from Viridiplantae including Chlorophyta, Bryophyta,

Marchantiophyta, Lycopodiopsida, and Spermatophyta.
Results of the phylogenetic tree reconstruction and
structural models’ comparison suggest that green algae
and cyanobacteria are the closest relatives for the mod-
ern plant nitroreductases. Conserved active sites, re-
quired for the co-factor binding, and chloroplastic/
mitochondrial localizations imply primary physiological
function in the oxidative stress response. In total, results
of this study provide the first theoretical background for
the future research of the Viridiplantae-delivered nitror-
eductases and discuss prospective areas for their prac-
tical application.
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