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Abstract

Background: Colorectal cancer is common to both sexes; third in terms of morbidity and second in terms of
mortality, accounting for 10% and 9.2% of cancer cases in men and women globally. Although drugs such as
bevacizumab, Camptosar, and cetuximab are being used to manage colorectal cancer, the efficacy of the drugs has
been reported to vary from patient to patient. These drugs have also been reported to have varying degrees of
side effects; thus, the need for novel drug therapies with better efficacy and lesser side effects. In silico drugs
design methods provide a faster and cost-effect method for lead identification and optimization. The aim of this
study, therefore, was to design novel imidazol-5-ones via in silico design methods.

Results: A QSAR model was built using the genetic function algorithm method to model the cytotoxicity of the
compounds against the HCT116 colorectal cancer cell line. The built model had statistical parameters; R2 = 0.7397,
R2adj = 0.6712, Q2

cv = 0.5547, and R2ext. = 0.7202 and revealed the cytotoxic activity of the compounds to be
dependent on the molecular descriptors nS, GATS5s, VR1_Dze, ETA_dBetaP, and L3i. These molecular descriptors
were poorly correlated (VIF < 4.0) and made unique contributions to the built model. The model was used to
design a novel set of derivatives via the ligand-based drug design approach. Compounds e, h, j, and l showed
significantly better cytotoxicity (IC50 < 5.0 μM) compared to the template. The interaction of the compounds with
the CDK2 enzyme (PDB ID: 6GUE) was investigated via molecular docking study. The compounds were potent
inhibitors of the enzyme having binding affinity of range −10.8 to −11.0 kcal/mol and primarily formed hydrogen
bond interaction with lysine, aspartic acid, leucine, and histidine amino acid residues of the enzyme.

Conclusion: The QSAR model built was stable, robust, and had a good predicting ability. Thus, predictions made
by the model were reliably employed in further in silico studies. The compounds designed were more active than
the template and showed better inhibition of the CDK2 enzyme compared to the standard drugs sorafenib and
kenpaullone.

Keywords: Colorectal cancer, Cyclin dependent kinase 2 enzyme, Computer-aided drug design, Quantitative
structure activity relationship, Molecular docking, Imidazole
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Background
Cancer is a major public health problem worldwide
and is the second leading cause of death in the USA.
Cancer is a term that refers to over 200 independent
health conditions in which cells in different body
parts divide abnormally and uncontrollably. Four of
the most common cancers are lung, breast, prostate
and colorectal cancer [1]. Colorectal cancer (CRC) is
the third most prevalent cancer in both sexes and the
second in terms of the rate of mortality. The cancer
accounts for 10% and 9.2% of all cancer cases in men
and women globally and causes over 500,000 deaths
annually. In the USA, about 147,950 new cases and
an estimated 53,200 mortalities from CRC are ex-
pected in the year 2020. While in Germany, 1 in 14
men and 1 in 18 women would diagnosed with CRC
within their lifetime, and 1 in 32 men and 1 in 39
women will die from CRC [1, 2].
CRC results from the abnormal division and growth

of colon cells. This abnormal division of cells forms
polyps which may be benign or cancerous. The cause
of these abnormal divisions is yet to be fully under-
stood [3]. However, risk factors have been associated
with age, race, family history, and a sedentary life-
style. CRC is more frequently diagnosed in persons
over the age of 50, persons of African descent, or
persons who consume high amounts of tobacco, alco-
hol, and high-fat diets. Persons with prior health con-
ditions such as obesity and diabetes, are also more
susceptible to the cancer [3–5]. However, over a
fourth of CRC cases are attributed to hereditary fac-
tors. The most common forms of hereditary colorec-
tal cancer are familial adenomatous polyposis coli
(FAP) and hereditary non-polyposis colon cancer
(HNPCC, Lynch syndrome) [2]. Just like most can-
cers, CRC at its infancy shows no significant symp-
toms, thus making early detection difficult. However,
where symptoms exist, they include changes in bowel
frequency, rectal bleeding, abdominal pains, weakness,
and weight loss [6]. Diagnosis of CRC can be made
by sigmoidoscopy or by colonoscopy while treatment
methods include surgery, radiation therapy and drug
treatments, such as chemotherapy, targeted therapy,
and immunotherapy [2, 7].
Drug treatment of CRC employs various strategies,

one such strategy is the use of cytotoxic agents, such
as 5-fluorouracil, oxaliplatin, and irinotecan. Another
drug treatment strategy involves the use of com-
pounds that block certain CRC targets. CRC chiefly
targets the epidermal growth factor receptor (EGFR)
and the vascular endothelial growth factor (VEGF).
Thus, compounds such as cetuximab, bevacizumab,
and ramucirumab, which block these targets are com-
monly employed in the fight against CRC [2, 8]. The

human cyclin-dependent kinase 2 (CDK2) has also
been observed to be overexpressed in CRC patients,
thus, inhibition and/or downregulation of this kinase
has also emerged as a strategy for tackling CRC [9,
10].
CDK2 primarily binds to cyclins A, B, and E and plays

an important role in cell cycle regulation. It is respon-
sible for G1 to S phase transition in the cell cycle. In
normal healthy cells, CDK2 is dispensable as CDK1 plays
mimicking roles. In cancerous cells, however, CDK2
plays a pivotal role in cell growth and progression [9,
11]. Overexpression of CDK2 and cyclins A and E has
been observed in ovarian, colorectal, breast, prostate,
and lung cancer patients [9, 10]. Therefore, drugs such
as flavopiridol, roscovitine, olomoucine, adapalene, and
kenpaullone, which are reported to be CDK2 inhibitors
and sorafinib, aspirin (salicylic acid), etc., which have
been reported to cause downregulation of the enzyme
via various mechanisms have been employed as therapies
for these cancers [9, 12–14]. However, the non-
specificity and toxicity of most of these drugs ensure
that the search for more specific and less toxic candi-
dates goes on [15]. Thus, this study built a robust quan-
titative structure activity relationship (QSAR) model
which predicted the cytotoxic activity of imidazol-5-one
compounds against HCT-116 CRC cell line, then, the
built model was used to design a novel set of imidazole-
5-ones compounds. Furthermore, the interaction be-
tween the designed compounds and the CDK2 enzyme
was carried out via the molecular docking approach to
determine the potential of the compounds to be used as
inhibitors of the enzyme.

Methods
QSAR
Dataset
A series of thirty-six (36) imidazole-5-ones com-
pounds reported to have cytotoxic activity against
HCT-116 colorectal cancer cell line were obtained
from the literature [16]. The structures of the com-
pounds were obtained, drawn, and are presented in
Fig. 1. The activity of the compounds (IC50) ranged
from 4.87-97.18 μM. The skew in the activity of the
compounds was minimized by converting the activity
to their logarithmic scale equivalents using the for-
mula (pIC50 = −log10 IC50) [17]. In the logarithmic
scale, the cytotoxic activity (pIC50) of the compounds
ranged from 4.02-5.31 M.

Geometry optimization, calculation of molecular
descriptors, and data division
The 2D structure of the obtained compounds was drawn
using the ChemDraw Professional v. 16.0 software. The
2D structures were converted to their 3D forms on the
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Spartan 14 V 1.1.4 software. The ground state equilib-
rium structures of the compounds were obtained via
geometry optimization using the density functional theo-
ry’s B3LYP/6-31G* basis set [18, 19]. The molecular de-
scriptors of the designed compounds were calculated
using the PaDEL-Descriptor v 2.21 software. One thou-
sand eight hundred and seventy-five 1D, 2D, and 3D
molecular descriptors were calculated for each com-
pound. These molecular descriptors were further pre-
treated at a correlation cut-off of 0.7 using the DTC Lab

Data Pretreatment v 1.2 software. Data pretreatment was
carried out to remove highly correlated and redundant
molecular descriptors [20]. The pretreated molecular de-
scriptors were subsequently divided into a training and
test set using the Kennard-Stone algorithm integrated
into the DTC Lab Data Division v 1.2 software. The
training set consists of 25 (70%) randomly selected com-
pounds while the test set is made up of the remaining
11 (30%) of the compounds in the dataset [18, 21]. The
training set was used to build the model while the test

Fig. 1 The structures of the compounds
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set was used in the external validation of the built
model.

Model building and validation
The dataset of molecular descriptors of the training
set compounds was transferred to the Biovia Mate-
rials Studio v 8.0 software. The QSAR model was
subsequently built using the Genetic Function Algo-
rithm function in the abovementioned Materials Stu-
dio software [18].
The stability, reproducibility, and predicting ability

of the model were ascertained by subjecting the
model to appropriate validation tests. The stability of
the model was determined by carrying out a multi-
linear regression and one-way ANOVA on the mo-
lecular descriptors present in the model using the
Microsoft Excel 2016 software. Furthermore, the
inter-correlation between the molecular descriptors in
the model was determined by calculating the variance
inflation factor (VIF). VIF was obtained as the leading
diagonal of the inverse of the correlation matrix [20].
The external validation of the model was carried out
using Equation 1:

R2
ext ¼

P11
i¼1 Y expi − Ypredi

� �2

P11
i¼1 Y expi − Ypredtrain

� �2 ð1Þ

Where R2
ext is the external coefficient of determin-

ation, Yexpi and Ypredi are the experimental and pre-
dicted cytotoxic activity of the ith test set compound
while Y exptrain is the mean of the experimental cyto-
toxic activity of the training set compounds [17]. The
robustness of the built model was evaluated by sub-
jecting the training set to a Y randomization test. In
the test, a series of randomly generated multilinear
regression (MLR) models are generated by shuffling
the molecular descriptors which keeping the cytotoxic
activity constant [18]. For a robust model, the
adopted validation parameters of R2 and Q2 are larger
than those randomly generated by the Y
randomization test. Furthermore, the Y randomization
coefficient of determination (cP2

p ) for a robust model

is greater than 0.5 [18]. The Y randomization test was
carried out using the DTC Lab’s YRandomization
software version 1.2. The zone of applicability of the
model was graphed out using the leverages approach
as described by Ikwu et al. [22].

Ligand-based design
Ligand-based design was employed in designing novel
imidazol-5-one derivatives. A template (compound 20)
was selected upon which further modifications were
made. Compound 20 was selected as a template

because it had high cytotoxic activity, a low residual
and was well within the applicability domain of the
built model [27]. The designed compounds were
drawn, optimized, and their molecular descriptors
were calculated as described in the “Geometry
optimization, calculation of molecular descriptors and
data division” section. The relevant molecular descrip-
tors were then copied and inserted into the regression
equation generated for the model to predict the cyto-
toxic activity of the designed compounds [23].

Molecular docking
Preparation of enzyme and ligands
The crystal structure of the human cyclin-dependent
kinase 2; CDK2 (PDB ID: 6GUE) was obtained from the
protein data bank. The downloaded enzyme was pre-
pared using the Discovery Studio 2016 software; the
water molecules and ligands present in the downloaded
enzyme were deleted. All chains excluding the A chain
of the downloaded enzyme were also removed while pre-
paring the enzyme for molecular docking studies [30].
The crystal structure of the prepared enzyme is pre-
sented in Plate 1.
The ligands were prepared for molecular docking by

converting the equilibrium structures to their protein
data bank (.pdb) file formats using the Spartan 14 v 1.1.4
software [30]. Sorafenib has been reported to downregu-
late CDK2 [14] while kenpaullone has been reported to
inhibit CDK2 [12]. Thus, the structures of sorafenib
(PubChem CID: 216239) and kenpaullone (PubChem
CID: 3820) were obtained, drawn, optimized, and saved
in the .pdb file format to prepare them for molecular
docking study.

Enzyme—ligand interaction
The prepared enzyme and ligands were transferred to
the PyRx software and their binding interaction was
monitored. The binding affinity and the interaction files
(.pdbqt file format) were obtained [24]. The interaction
files obtained were subsequently opened in the Discov-
ery Studio software where the visualization of the inter-
action was carried out [18].

Results
QSAR
A QSAR model was built to predict the cytotoxic activity
of imidazole-5-one compounds against HCT-116 colo-
rectal cancer cell line. The regression equation of the
built model is presented in Equation 2. The regression
statistics of the model is presented in Table 1 while the
model validation parameters are presented in Table 2.
The external validation of the built model was calculated
in Supplementary Table S1. The definition of the mo-
lecular descriptors in the build regression model is
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presented in Table 3 while Table 4 presents the statis-
tical parameters of these molecular descriptors. The re-
sult of the Y randomization test is presented in Table 5.
The predicting ability of the built model was

ascertained by comparing the experimental and pre-
dicted cytotoxic activity of the compounds in the
dataset. The experimental and predicted cytotoxicity
of the compounds in the training and test are pre-
sented in Supplementary Table S2 and S3,

respectively. Figure 2, however, presents a scatter plot
of these experimental and predicted cytotoxic activ-
ities. While Fig. 3 presents a scatter plot of the ex-
perimental activity against the standardized residual
for each molecule in the dataset, the zone of applic-
ability of the model was graphed out using the lever-
ages method [18] and plotted in Fig. 4.

pIC50 ¼ − 0:124851343� nS − 5:137570104� GATS5s
þ0:000256939� VR1 Dzeþ 12:790319005
�ETA dBetaP − 0:173566533� L3iþ 6:319854761

ð2Þ

Ligand-based design
Compound 20 was selected as the template used in
ligand-based design. Slight modifications were made
to it and twelve derivatives were designed. The mo-
lecular descriptors of the designed compounds were
obtained and inserted into Equation 2 to obtain their
cytotoxicity. These molecular descriptors are pre-
sented in Supplementary Table S4. The designed
compounds and their corresponding activities are pre-
sented in Table 6.

Table 1 Regression statistics

df SS MS F p value

Regression 5 2.349644479 0.469928896 10.79888 4.96E-05

Residual 19 0.8268128 0.043516463

Total 24 3.176457278

Key: df degree of freedom, SS sum of squares, MS mean square error; F
F statistic

Table 2 Model validation parameters

Parameter Model 1 Benchmarka

Friedman LOF 0.2006

R-squared (R2) 0.7397 ≥ 0.6

Adjusted R-squared (R2adj.) 0.6712 ≥ 0.6

Cross validated R-squared (Q2
cv) 0.5547 ≥ 0.5

Significant regression? Yes Yes

External validation (R2ext.) 0.7202 ≥ 0.6

Key: a[31]

Table 3 Name, definition, category and class of molecular
descriptors

Name Definition Category Class

nS Number of sulfur atoms Atom count
descriptor

2D

GATS5s Geary autocorrelation—lag 5/
weighted by I state

Autocorrelation
descriptor

2D

VR1_Dze Randic-like eigenvector-based
index from Barysz matrix/weighted
by Sanderson electronegativities

Barysz matrix
descriptor

2D

ETA_dBetaP A measure of relative unsaturation
content relative to molecular size

Extended
topochemical
atom descriptor

2D

L3i 3rd component size directional
WHIM index/weighted by relative
first ionization potential

PaDEL WHIM
descriptor

3D

Plate 1 Crystal structure of CDK2 enzyme (PDB ID: 6GUE)

Ikwu et al. Journal of Genetic Engineering and Biotechnology           (2020) 18:51 Page 5 of 12



Molecular docking study
The crystal structure of the human cyclin-dependent
kinase 2 (PDB ID: 6GUE) was downloaded from the
protein databank. The downloaded kinase was pre-
pared using the Discovery Studio 2016 software. The
A chain of the downloaded receptor was employed in
molecular docking studies using the PyRx software.
Multiple enzyme-ligand interactions were carried out
by the software and the most stable conformation
was presented by the software. Compounds e, h, j,
and l were observed to have significantly better cyto-
toxic activity compared to the template compound
and standard drug doxorubicin. Thus, the molecular
docking study of these compounds and the template
were carried out with the CDK2 enzyme. The stand-
ard drugs sorafenib and kenpaullone were also docked
with the CDK2 enzyme and their binding affinity was
compared with those of the designed compounds.
Findings from the molecular docking study are pre-
sented in Table 7. Compounds e and h had the

highest binding affinity with a value of −11.0 kcal/mol
each. The 2D interaction of compounds e and h and
the enzyme are presented in Plates 2 and 3,
respectively.

Discussion
QSAR
QSAR is a variant of the quantitative structure-
property relationship approach. This variant posits
that the pharmacological activity of a dataset of com-
pounds can be expressed as a linear combination of
their molecular descriptors [25]. The built model re-
vealed that the cytotoxic activity of imidazole-5-ones
against HCT116 colorectal cancer cell line was
strongly dependent on the molecular descriptors nS,
GATS5s, VR1_Dze, ETA_dBetaP, and L3i. The regres-
sion equation of the model was shown in Equation 2
while the definition of the molecular descriptors was
presented in Table 3. The model built was observed
to be significant, possessing p < 0.05 (Table 1). The
model also met all internal and external validation
benchmarks (Table 2). The predictions made by the
model are therefore reliable, and can be employed in
further theoretical and experimental studies.
A robust model is characterized by the presence of

poorly correlated molecular descriptors. This ensures
that each molecular descriptor makes a unique contri-
bution to the prediction made by the model [17].
Poorly correlated molecular descriptors have VIF
values < 5.0. As shown in Table 4, the molecular de-
scriptors were all poorly correlated (VIF < 3.5). This
implies that each molecular descriptor made a unique
contribution to the model. However, the contribution
of the descriptors nS and L3i were observed to the
insignificant (p value > 0.05; Table 4). This was also
mirrored by their low mean effects (< 0.02; Table 4).
The molecular descriptors GATS5s and ETA_dBetaP
(p < 0.05) were the major contributors to the model,
both had |ME| > 1.0.
The predicting ability of the model was determined

by using the regression equation to predict the cyto-
toxic activity of the compounds in the training and
test set. The predicted activity and residual of each

Table 4 Statistical parameters of descriptor

Descriptor Coefficient ME VIF t stat p value SE

nS −0.1249 0.053941 1.174334 −1.49834 0.150477 0.0833

GATS5s −5.1376 2.446025 3.119743 −4.64905 0.000175 1.1051

VR1_Dze 0.0003 −0.0787 1.12511 3.097051 0.005934 0.0001

ETA_dBetaP 12.7903 −1.50015 2.717113 5.457748 2.89E-05 2.3435

L3i −0.1736 0.078893 1.517541 −1.72007 0.101668 0.1009

Key: ME mean effect, VIF variance inflation factor, SE standard error

Table 5 Y randomization test

Model R R2 Q2

Original 0.860062 0.739706 0.554712

Random 1 0.569068 0.323839 −1.17969

Random 2 0.556022 0.309161 −0.34937

Random 3 0.427541 0.182791 −0.53108

Random 4 0.501596 0.251598 −0.85524

Random 5 0.645348 0.416475 0.063014

Random 6 0.502871 0.252879 −0.52581

Random 7 0.522143 0.272633 −0.24368

Random 8 0.595235 0.354305 −1.92796

Random 9 0.423402 0.179269 −0.35291

Random 10 0.588755 0.346633 −0.06237

Random models parameters

Average R 0.533198

Average R2 0.288958

Average Q2 −0.59651

cRp2 0.580402
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compound in the train and test were presented in
Supplementary Tables S1 and S2. Figure 2 however
presented the scatter plot of the experimental and
predicted cytotoxic activity of the compounds in the
dataset. The coefficient of determination for both the
test and train set were both > 6.0. Thus implying that
the model had a good predicting ability. The presence
of systematic errors in the model was investigated
using the standardized residual method. Figure 3 pre-
sented a graph of the standardized residual against
experimental activity. The data points were observed
to be randomly distributed, thus, signifying the ab-
sence of systematic errors [18]. The robustness of the
model was determined using the Y randomization
test. Findings were presented in Table 5. The Y
randomization co-efficient of determination (cP2

p ) was

observed to be greater than 0.5, thus implying that
the model built was a robust one [17]. The zone of

applicability of the model was graphed out using the
leverages method and was presented in Fig. 4. The
zone of applicability presents those molecules whose
cytotoxic activity was satisfactorily predicted by the
model. Compounds within the zone of applicability
can be satisfactorily employed for further in silico
studies [22, 26].

Ligand-based design
Ligand-based design is one of two methods used in
computer-based drug design. In this design method, a
compound of known pharmacological activity is ob-
tained, and slight modifications are made to this com-
pound to obtain a novel set of compounds with
potentially better pharmacological activity [27]. In this
study, compound 20 was selected as the template com-
pound, because it was very active (IC50 = 4.87 μM), the
model made a good prediction of its activity (Fig. 2) and

Fig. 2 Experimental and predicted cytotoxic activity

Fig. 3 Standardized residual against experimental activity
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it was also well within the zone of applicability of the
model (Fig. 4). It was observed that the cytotoxicity of
the compounds was dependent on the electronegativity
of the substituent groups [16]. Thus, modification of
compound 20 primarily involved the introduction of
electronegative substituents.
The activity of the compounds was observed to in-

crease significantly when fluorine (-F) and Nitro
(-NO2) groups are used as substituent. The activity of
the compounds also increased with increase in the
number of these substituents. Compounds e and h
(two -F substituents) for instance were more active

than compound c (one -F substituent). Similarly,
compound l (two -NO2 substituents) was more active
compared to compound b (one -NO2 substituent). Six
compounds (b, c, e, j, l, and h) were more active than
the template compound and the standard drug doxo-
rubicin (Table 6).

Molecular docking study
Molecular docking investigates the interaction be-
tween a compound (ligand) and its target (enzyme) at
an atomic level. It investigates the binding affinity,
nature, and type of bonding and nonbonding interac-
tions between the ligand and amino acid residues of
the enzyme [28, 29]. Table 7 presented the results of
docking studies between compounds e, h, j, and l,
and the CDK2 enzyme. The template compound
(compound 20) and the standard drugs sorafenib and
kenpaullone were also docked with the CDK2 en-
zyme. The binding affinity of the designed com-
pounds (−10.8 to −11.0 kcal/mol) was slightly higher
than that of the template (−10.6 kcal/mol) and was
significantly higher than that of sorafenib (−9.7 kcal/
mol) and kenpaullone (−9.4 kcal/mol). The designed
compounds formed hydrogen bonds with lysine
(LYS20, LYS89), aspartic acid (ASP145), leucine
(LEU83), and histidine (HIS84) amino acid fraction of
the CDK2 enzyme. The hydrogen interaction formed
was primarily with the pyrrolidine and 2, 3-dihydro-
1H-pyrrole groups of the designed compounds. Com-
pounds e and h had higher binding affinities (−11.0
kcal/mol each) and this could be attributed to the
halogen (fluorine) interaction formed between these
compounds and the glutamic acid (GLU8) residue of

Fig. 4 The zone of applicability of QSAR model

Table 6 Cytotoxic activity of designed compounds

Compound R1 R2 R3 pIC50 (M) IC50 (μM)

a. -H -Br -H 5.1581 6.9490

b. -H -NO2 -H 5.2999 5.0131

c. -F -H -H 5.3681 4.2843

d. -Cl -H -H 5.1022 7.9040

e. -F -H -F 5.4049 3.9362

f. -Cl -H -Cl 4.9666 10.7985

g. -Br -Br -H 5.1224 7.5440

h. -F -F -H 5.8668 1.3590

i. -Cl -Cl -H 4.9438 11.3808

j. -NO2 -H -H 5.478 3.3265

k. -Br -H -Br 5.1535 7.0224

l. -NO2 -H -NO2 5.7351 1.8403

Template (compound 20) -Br -H -H 5.257 5.5330

Doxorubicina 5.23 ± 0.2

Key: a Abo-Elanwar et al. [16]
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the CDK2 enzyme. All compounds however formed
an electrostatic interaction with the lysine (LYS129)
amino acid residue of the enzyme.

Conclusion
The cytotoxic activity of imidazol-5-ones against
HCT116 colorectal cancer cell line was modeled via the
QSAR approach. The cytotoxic activity of the com-
pounds was dependent on the molecular descriptors nS,

GATS5s, VR1_Dze, ETA_dBetaP, and L3i. Novel set of
compounds were designed via the ligand-based design
approach, and their activity was strongly dependent on
the electronegativity of the substituent group(s). Com-
pounds e, j, h, and l showed remarkable cytotoxicity (<
4.0 μM) against the colorectal cancer cell line. The com-
pounds were also observed to be potent inhibitors of the
CDK2 enzyme, having binding affinities ranging from
−10.8 to −11.0 kcal/mol and forming hydrogen bond

Plate 2 2D interaction between compound e and CDK2 enzyme (PDB code: 6GUE)
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interactions with lysine, aspartic acid, leucine, and histi-
dine amino acid residues. The designed compounds
were predicted to be more potent than the standard
drugs doxorubicin and had a higher binding energy
compared to the standard drugs sorafenib and
kenpaullone.
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