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Abstract

represents a very useful tool for optimization.

methodology

Background: The production of indole-3-acetic acid (IAA) is an essential tool for rhizobacteria to stimulate and
facilitate plant growth. For this, eighty rhizobial bacteria isolated from root nodules of Acacia cyanophylla grown in
different regions of Morocco were firstly screened for their ability to produce IAA. Then, IAA production by a
combination of isolates and the inoculation effect on the germination of Acacia cyanophylla seeds was studied
using the best performing isolates in terms of IAA production. The best IAA producer bacterial isolate (169) was
selected to optimize IAA production using response surface methodology based on the central composite design.

Results: Results showed that the majority of tested isolates were able to produce IAA with a relatively higher
concentration of 135 pg/ml for the isolate 169, followed by isolates 122 and 175 with respective concentrations of
116 ug/ml and 105 pg/ml 1AA. The IAA production and the seed germination rate were relatively increased by the
synergistic effect of 169 and 122. Later, response surface methodology was used to determine optimal operating
conditions leading to IAA production optimization. Thus, an incubation temperature of 36 °C, a pH of 6.5, an
incubation time of 1 day, and respective tryptophan and NaCl concentrations of 1 g/l and 0.1 g/l were optimal
parameters leading to 166 pug/ml IAA which was the maximal produced concentration.

Conclusion: The present study highlighted that IAA-producing rhizobacteria could be harnessed to improve plant
growth. Furthermore, their production can be easily controlled using response surface methodology, which
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Background

Indole-3-Acetic Acid (IAA) is one of the most important
and physiologically active phytohormones [1, 2]. It is a
secondary metabolite of L-tryptophan that acts as a
regulator of many biological processes for plant develop-
ment while acting on organogenesis, trophic responses,
and cellular responses such as cell expansion, division,
differentiation, and regulation of genes [3, 4]. The major-
ity of rhizobacteria can produce IAA that is the most
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abundant type of auxins [5]. Under natural conditions,
plant roots excrete organic compounds, including L-Trp
that can be used by rhizobacteria for IAA biosynthesis
which can help non-native plant species to resist under
biotic and abiotic stress conditions [6—8]. However, little
information is available on the relationship between
stress and auxins in plants, and the evolutionary role
played by auxin in adapting plants to various environ-
mental stresses [9, 10].

Indeed, several authors have reported the role of this
phytohormone in plants’ adaptation to salinity stress [11,
12] and heavy metal stresses [13]. IAA has been well
documented as an essential phytohormone known
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primarily for its ability to stimulate plant growth and de-
velopment [6, 14]. Indeed, IAA synthesized by rhizobac-
teria affects mostly the root system by increasing its size,
weight, lateral roots number, and the area of contact
with the soil. This mechanism contributes to increase
nutrient research and acquisition in soil, which improves
plant development and yield [15, 16]. Moreover, IAA
can act as a reciprocal signaling molecule by affecting
gene expression in many bacteria and also plays a critical
role in the plant-bacteria interaction [17, 18]. Also, it has
been shown that nodulated roots contain more IAA than
non-nodulated roots [19, 20], and auxins could be essen-
tial for maintaining a root nodule functional [21].

IAA production by rhizobacteria can differ considerably
between different species or strains of the same species.
Moreover, several environmental factors can influence the
biosynthesis of this phytohormone [22], in particular, a
high pH and the presence of large quantities of trypto-
phan, which lead to an increase in its production [21]. In
fact, Chandra et al. [23] found that their tested isolates for
optimizing the IAA production showed better amount of
IAA produced at pH9. Similarly, Shoukry et al. [24] re-
ported that pH7 was the optimum growth pH for IAA
production by Rhizobium strains in medium supple-
mented with 5 g/l L-tryptophan.

This study aimed to perform a screening of rhizobac-
teria that produce IAA and to optimize factors leading
to the highest IAA concentration using experimental de-
signs methodology. These methods allow experimenta-
tion with a minimum number of experiments and give
the possibility of screening for different factors [25] from
the most influential to the least influential. Also, it
makes possible the optimization of the operating condi-
tions giving the best possible result.

Several studies have addressed the topic of IAA pro-
duction optimization. Some of them have used the clas-
sical optimization approach, which consists in studying
the effect of each factor separately while fixing the
others [24, 26, 27]. Others have used designs of experi-
ments type Taguchi [28] and Plackett and Burman [29].
The use of experimental designs in optimization has
shown many benefits compared to the classical approach
because it gives the possibility of modeling responses
and studying the interaction between factors. In this
way, we have chosen to use a response surface design
because it is better recommended than the Plackett and
Burman designs and Taguchi tables since it concerns an
optimization rather than a factor screening.

Methods

Isolation of rhizobia from nodules

Nodules were harvested, according to the method rec-
ommended by Vincent [30] and Beck et al. [31], from
the roots of Acacia cyanophylla from three Moroccan
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regions (Eastern, Central, and North West). These nod-
ules were immersed in 95% (v/v) ethanol for 30s, then
transferred to a mercury chloride (HgCl,) solution 0.1%
for 4 min. A series of three rinses of 10, 15, and 20 min,
respectively, were performed under aseptic conditions
using sterile distilled water [30, 32]. Surface-sterilized
nodules were crushed using a few drops of NaCl (9 %o)
[31]. The operation was performed under conditions of
total asepsis. One hundred microliters of the suspension
obtained was spread on Petri dishes containing Yeast-
Mannitol-Agar (YMA) medium [30].

Screening of isolates for IAA production

Different Rhizobium isolates from Acacia cyanophylla’s
root nodules isolated from three Moroccan regions (East-
ern, Central, and North West) were tested for their ability
to produce IAA. For this, the amount of IAA production
in each isolate was determined by the colorimetric tech-
nique by using Salkowski reagent containing: 50 ml, 35%
perchloric acid (HCIO,4); 1 ml of 0.5 M iron trichloride
(FeCl3) according to the protocol proposed by Bric et al.
[33]. The bacterial isolates were cultured in Erlenmeyer of
250 ml containing 50 ml of YMB supplemented with 2 g/1
L-tryptophan, at 28 + 2 °C for 7 days at a shaking speed of
150 rpm in an orbital shaking incubator. Afterward, bac-
terial cultures were centrifuged at 10.000 rpm for 10 min
at 4°C, and the supernatant liquid was mixed with Sal-
kowski reagent (1:2). The mix was incubated for 30 min in
the dark at 28 + 2°C, and then absorbance was measured
at 530 nm. The concentration of IAA produced was esti-
mated using a standard IAA curve. All IAA determination
experiments were made in triplicate.

Study of IAA production by a combination of isolates

The IAA production by a combination of the three best
producing strains of this acid (Rhizobium sp. KX884
900.2 (122), Rhizobium sp. KJ748400.1 (169), and Agro-
bacterium rhizogenes CP019702.1 (I75) was tested. For
this, from the primary cultures of the three bacterial
strains (10® CFU/ml), four mixed cultures (122 + 169, 122
+ 175, 169 + 175, and 122 + 169 + 175) were prepared and
then tested in 50 ml of YMB medium supplemented with
L-tryptophan (1 g/l). After incubation at 28 + 2°C with
150 rpm for 7 days, cultures were centrifuged, and the
IAA concentration produced was measured and esti-
mated for each culture at 530 nm using the Salkowski
reagent. Three repetitions were made for each test.

Effect of inoculation on A. cyanophylla seed germination
Seed preparation

Tested seeds were obtained from the High Commission
for Water and Forests and the Fight against Desertifica-
tion of Fes-Boulemane region (http://www.eauxetforets.
gov.ma). Then, they were surface-sterilized with 70%
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ethanol (v/v) and immersed in 0.1% (w/v) fresh-made
HgCl, for 5-10 min, followed by three washes with ster-
ile distilled water and soaking in 95% H,SO, to scarify
them [34, 35]. After rinsing with sterile distilled water,
seeds were imbibed under sterile conditions for 6 h at
room temperature.

Preparation of the bacterial inoculum and seed
bacterization

The three Rhizobium isolates, showing the highest IAA
productions, were selected to verify their effect on the
germination of A. cyanophylla’s seeds. These isolates
were cultured separately in liquid stirred YMB (150 rpm)
at 28°C for 48 h. Then, the bacterial suspensions were
centrifuged at 10,000 rpm for 10 min. The pellet was
suspended in 10ml of MgSO,; 7H,O (0.1 M), and
surface-sterilized seeds were soaked in the bacterial sus-
pension for 30 min. The control seeds were immersed in
a magnesium sulfate solution for the same duration [36].
Seeds were subsequently dried in a stream of sterile air
for 1 h [37]. Germination was performed in Petri dishes
containing 1% agar and incubated in the dark at 28°C
until radicle emergence for 3 to 10 days. The parameters
studied in this test are root length and final germination
rate, which is expressed as the ratio of the germinated
seed number on total seed number.

Experimental design

Experimental designs present useful tools for parame-
ters’ screening and optimization. Based on the laws of
statistical regression, they allow the quantification of
various factor effects on a studied response and the
optimization of operating conditions in well-defined ex-
perimental areas.

The central composite design, which is a part of re-
sponse surface methodology, is used for response
optimization. In this context, a sequence of experiments
is carried out to evaluate the effect of factors on re-
sponse and to obtain the optimal response.

The fitted model

To express the response as a function of the independ-
ent variables, we have used a quadratic model such as
Eq. (1):

+b11 X1 X; + bpXoX; + b33 X3X3
+ by Xy Xy + bss X5X5 + b12 X1 X5
+ b13X1 X3 + b3 Xo X3 + b1 X1 Xy
+ b2 X5 Xy + b3 X3Xy + b15X1 X5
+ b5 Xy X5 + b3sX3Xs5 + bysXaXs + € (1)

with Y = the response (IAA) expressed in (pug/ml); by
is the constant term; by, bybs by bs are coefficients of the
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main terms; by, bas, bss, byy and bss are coefficients of
quadratic terms; and by, bz, bag; bia, boas bsas bis, bas,
bss and bys are coefficients of binary terms

Statistical analysis

The second-order model coefficients were calculated
based on the experimental data. The statistical analysis
was carried out using ANOVA test. In this way, the ratio
between the mean square regression (MSR) and the
mean square residual (MSr), Fratior/r) Was used at a 95%
significance level to check the model statistical signifi-
cance [38].

Optimization of IAA production by experimental design
Among all tested isolates, the best IAA producer was se-
lected to study the effect of different variables on this
phytohormone’s production. Later, its optimization
based on response surface methodology-central compos-
ite design was investigated. The chosen variables were L-
tryptophan and NaCl concentrations, pH, incubation
time, and incubation temperature. All factors were stud-
ied at three different levels (Table 1).

Results

Screening of isolates for IAA production

The colorimetric assay showed that 96% of the eighty
tested isolates were able to produce IAA on YMB
medium at varying concentrations depending on their
efficiency and their enzymatic potency. Indeed, a rela-
tively higher concentration was found in the culture fil-
trate of strain 169 (135 pg/ml).

Study of IAA production by a combination of isolates
The combined effect of the three best IAA producers
(122, 169, and 175) was studied.

The obtained results revealed that the combination of
two isolates 122 and 169 induces the highest hormonal
production with 158.68 pg/ml of IAA (Fig. 1). However,
the inoculation by 175, in combination with the other
two isolates, showed a negative effect on IAA
production.

Table 1 Factors and their levels used in the optimization of IAA
production by Rhizobium sp. using the central composite design

Symbol Variables Level 1 Level 2 Level 3
X1 [L-tryptophan] (g/1) 0.1 05 0.9

X2 NaCl] (g/1) 0 25 5

X3 Temperature (°C) 30 36 42

X4 pH 4 6.5 9

X5 Incubation time (days) 1 8 15
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Fig. 1 Production of IAA by the combination of three rhizobial isolates (122, 169, and 175)
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Inoculation effect on Acacia cyanophylla seed germination
The two isolates 122 and 169 having the ability of
synergistic IAA biosynthesis were further tested for
their impact on seed germination of A. cyanophylla
and seedling growth. The observations were made
under controlled conditions in Petri dishes, where
the effect of the tested bacteria on the plant’s
growth is a direct consequence of its interaction
with the plant. Seed bacterization by both of the
studied isolates (Fig. 2) showed their ability to form
a beneficial association with the A. cyanophylla seed-
lings. Isolates 122 and 169 were able to increase the
germination rate by 1.61 and 1.68 times, respectively,
compared to control, while the submission of seeds
to a combination of these two isolates showed a ger-
mination rate increase of 1.87 times. Thus, stimula-
tion of stem length and seedling roots has been
demonstrated by our isolates. Respective increases of
stem length of 1.62, 1.75, and 2 times were observed
for inoculation treatments with 122, 169, and 122 +
169, while root length increases of 2.72, 3.09, and
3.63 times were respectively obtained for the three
inoculation treatments. The results obtained during
this study showed a significant effect of isolates on
seedling germination and growth (p < 0.001).

Optimization of IAA production by central composite
design

The studied isolates were screened for their ability to
produce IAA. Results showed that 77 isolates among the
80 tested ones were able to produce this phytohormone.
The isolate 169 leads to the highest IAA production
(135 pug/ml). The effects of various factors on IAA pro-
duction by 169 and its optimization were studied using a
central composite design containing 30 experiments.
The experimental design, including the different combi-
nations between studied factors and observed responses
for each experiment, is shown in Table 2.

Statistical validation of the postulated model

Variance analysis shows that the main regression effect is
significant since the p value is lower than 0.05 (Table 3).
The coefficient of determination R? (93.4%) was sufficient
and gave excellent compatibility between the experimental
and predicted values of the postulated model. Figure 3
confirms that the curve of observed values versus pre-
dicted ones has a straight line appearance.

Factors effects and fitted model
Table 4 presents the different estimated coefficients of
the studied factors as well as the statistical values of Stu-
dent’s ¢ and the observed probability (p value). The
values of Student’s test are used to determine the signifi-
cance of each parameter, while p values are defined as
the lowest level of importance, leading to the rejection
of null hypothesis Hy (bi = 0, a = 0.05). In general, the
greater is the magnitude of ¢, the smaller is the p value,
and the larger is the coefficient corresponding term. Re-
garding those results (Table 4), the statistically signifi-
cant coefficients were as follows:

- The constant by

- The quadratic terms by, bys.

All these factors have a p value less than 0.05.

The mathematical model representing the response in
terms of significant coefficients is represented by the fol-
lowing equation (Eq. (2)):

Y = 108-56, 39X% -93, 25X 2, (2)

Optimization of parameters

Isoresponses plot

The isoresponse profile plot (Fig. 4) allowed us to consider

various solutions relating to the operating parameters.
According to literature, the maximum production of

IAA was reached after 9 days of incubation with a L-Trp

concentration of 2g/l [3]. Thus, the objective of our
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Fig. 2 Inoculation effect by the isolates 122 and 169 on seed germination of Acacia cyanophylla and seedling growth

Table 2 Experimental plan for the optimization of IAA production by the strain 169: experiment 27, 28, 29, and 30 represent central

points

N°Exp Incubation temperature (°C) pH [NaCll (g/1) [Tryptophane] (g/1) Incubation time (days) [IAA] (ug/ml)
1 30 4.0 0.10 1 15 6.90

2 42 4.0 0.10 1 1 6.34

3 30 9.0 0.10 1 1 18.87
4 42 9.0 0.10 1 15 491

5 30 4.0 1.00 1 1 8.25

6 42 4.0 1.00 1 15 2.76

7 30 9.0 1.00 1 15 11.34
8 42 9.0 1.00 1 1 6.58

9 30 4.0 0.10 9 1 5.00
10 42 4.0 0.10 9 15 5.80

1 30 9.0 0.10 9 15 6.96
12 42 9.0 0.10 9 1 4.03
13 30 40 1.00 9 15 4.30
14 42 4.0 1.00 9 1 3.76
15 30 9.0 1.00 9 1 27.84
16 42 9.0 1.00 9 15 3241
17 30 6.5 0.55 5 8 90.72
18 42 6.5 0.55 5 8 2.55
19 36 4.0 0.55 5 8 2.98
20 36 9.0 0.55 5 8 16.58
21 36 6.5 0.10 5 8 119.73
22 36 6.5 1.00 5 8 123.27
23 36 6.5 0.55 1 8 157.79
24 36 6.5 0.55 9 8 108.14
25 36 6.5 0.55 5 1 121.93
26 36 6.5 0.55 5 15 88.92
27 36 6.5 0.55 5 8 118.19
28 36 6.5 0.55 5 8 118.27
29 36 6.5 0.55 5 8 117.66
30 36 6.5 0.55 5 8 117.55
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Table 3 Analysis of variance for the fitted model

Source of variance  DF SS MS Fratio p value
R 20 79056424 395282 63636  0.0036*
r 9 5590451 621.16

Total 29 84646.875

R 93%

R regression, r residual, SS sum of squares, DF degrees of freedom, MS mean
square, R? coefficient of determination
*Statistically significant at p < 0.05 probability

study was to optimize the studied parameters to produce
the highest amount of IAA by 169 while minimizing in-
cubation time and concentration of L-Trp added to
growth medium.

Considering the isoresponse plot (Fig. 4), the mini-
mum incubation time to reach the desired yield (166 pg/
ml) is 1 day. For this period, L-Trp and NaCl concentra-
tions giving this yield are respectively 1g/l and 0.1 g/l.
The next step is to fix these values for the three previous
parameters and look for the values of the two other
factors.

The white area in isoresponse plot (Fig. 4) shows a
compromise zone for both parameters: incubation
temperature and pH to obtain the desired concentration
of IAA by isolate 169 after fixing the other three parame-
ters at their optimal level. The fixation of these parame-
ters (concentration of L-Trp and NaCl and incubation
time) allowed us to know the domains of variation of the
other factors: temperature of incubation and pH. Hence,
obtaining a concentration of 166 pug IAA/ml requires an
incubation period of 1 day, respective concentrations of
L-Trp and NaCl of 1 g/l and 0.1 g/, a pH value between
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6.19 and 6.74, and an incubation temperature between
34.46 and 36.18 °C.

The desirability study allowed us to define precisely
the optimized values of the five studied factors.

Desirability study

This optimization tool allowed us to know precisely the
optimal values of studied parameters, leading to the ex-
pected yield with a defined degree of compromise (desir-
ability). The desirability plot of optimal IAA production
conditions is shown in Fig. 5.

This plot indicates that it is possible to achieve an op-
timal IAA vyield with relative desirability equal to 98%.
Thus, parameters giving the best IAA production are an
incubation temperature of 36 °C, a pH of 6.5, respective
L-Trp, NaCl concentrations of 1g/l and 0.1g/l, and an
incubation time of 1 day. With these conditions, we have
a 98% probability to produce IAA at a concentration of
166 ug IAA/ml.

Discussion

The variation in IAA production by different rhizobial iso-
lates and the influence of cultural conditions on IAA pro-
duced amount has been reported by many authors [39-41].
The variation in IAA production is may be due to variation
in L-Trp utilization by each isolate. Our results revealed
that IAA production by the tested isolates was much higher
than those found in previous studies. Indeed, the maximal
reported production amounts were 80.96ug IAA/ml,
99.7 ug AIA/ml, 107 pg IAA/ml, and 142 pg IAA/ml by
Rhizobium sp. isolated respectively from root nodules of
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Table 4 Effects of model coefficients that relate the response to factors

Term Coefficient Estimation Erreur standard Report t Prob.>[t|
Constant bg 107.99474 7.786987 13.87 < 0.0001%**
Incubation temperature (30,42) b, — 6.168889 5874433 - 1.05 0.321
pH(4,9) b, 4.635 5874433 0.79 04504
[NaClj(0,1,1) b3 2.3316667 5.874433 04 0.7007
[Tryptophane](1,9) by — 1416667 5.874433 - 024 0.8148
Incubation time (1,15) bs — 2127778 5874433 - 036 0.7256
Incubation temperature *pH by — 0.705625 6.230777 - 0.11 09123
Incubation temperature *[NaCl] bis 0651875 6.230777 0.1 0919
pH*[NaCl] b3 3.023125 6.230777 049 0.6391
Incubation temperature *[Tryptophane] by 1.666875 6.230777 0.27 0.7951
pH*[Tryptophane] b24 2183125 6.230777 035 0.7341
[NaCl*[Tryptophane] D34 3413125 6.230777 0.55 05972
Incubation temperature *Incubation time bis 3476875 6.230777 0.56 0.5904
pH*Incubation time bys 0.118125 6230777 0.02 0.9853
[NaCll*Incubation time b3s 0.878125 6.230777 0.14 0.891
[Tryptophane]*Incubation time b4s 1435625 6.230777 0.23 0.8229
Incubation temperature * Incubation temperature by — 56.39836 15.90287 — 355 0.0063**
pH * pH b2> —93.25336 15.90287 - 586 0.0002%**
[NaCl]*[NaCl] b33 18466643 15.90287 1.16 0.2754
[Tryptophane]*[Tryptophane] b4 29.931643 15.90287 1.88 0.0925
Incubation time*Incubation time bss 23916429 15.90287 0.15 0.8838

**Statistically significant at p < 0.01 probability
***Statistically significant at p < 0.001 probability

Horizontal Vertical Factor X
(O ¢ Incubation temperature | 35414634
o - pH | 6,4695122
( [NacI) I 0,1
o - [Tryptophanel I 1
= — ’ { 1
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Fig. 4 Isoresponses plot for the IAA production optimization by considering both incubation temperature and pH factors and by fixing the
concentrations of L-Trp at 1 g/l and NaCl at 0.1 g/ and the incubation time at 1 day
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Vigna trilobata (L) Verdc., Cajanus cajan, Alysicarpus vagi-
nalis DC, and Phaseolus mungo [42—45].

The IAA production by a combination of Rhizobium,
Agrobacterium, and Paenibacillus was studied by Shokri
and Emtiazi [28]. These researchers found an increase in
IAA concentration produced by Rhizobium and Paeni-
bacillus combination, showing a synergistic effect. But
this concentration decreased when Agrobacterium was
used in combination with the other two bacteria. Similar
results were obtained by El-Shanshoury [46], who found
that double inoculation with Azotobacter chroococcum
and Azospirillum brasilense or Streptomyces mutabilisa
significantly stimulated IAA production.

The reduction in IAA production can be due to the re-
lease of enzymes degrading this hormone, such as IAA
oxidase and peroxidase, as already reported by several
authors [28, 43, 47]. Other studies have reported the
ability of rhizobia to produce these enzymes in the
medium inducing reduction of hormone concentration
[43, 48]. Incompatibility of 175 with 122 and 169 may be
due to competition between these bacterial strains and
to production of some compounds inhibiting bacterial
growth. This antagonistic effect was previously explained
by nutritive competition phenomena when bacterial
density is high [49, 50].

Our results concerning the effect of inoculation by the
tested bacteria on Acacia cyanophylla seed germination
are consistent with several studies [26, 41, 44] which
claimed that the use of PGPR specifically IAA producing
bacteria might have a significant effect on increasing
seed germination rate and promoting plant growth.

It was shown that longer root systems provide better
access to stored water and nutrients such as nitrogen, a
soluble nutrient that tends to seep into the deeper soil
layers [51]. IAA controls a wide variety of processes in
plant growth and root system development. Indeed, low
concentrations of IAA can stimulate primary root elong-
ation, while higher levels of this hormone stimulate

lateral root formation, decrease primary root length, and
increase absorbent hair formation [52]. Seed germination
in any plant species is an active metabolic process that
begins when seeds are exposed to an appropriate
temperature and humidity [53]. IAA has been known for
its participation in the early stages of germination in cer-
tain plant seedlings [54]. The synthesis of plant growth
regulators, in particular IAA, initiates germination of the
plants’ seeds, but initiation is triggered by germination
stimulators released from host plant roots [53].

The experimental design was a powerful tool that
has been used successfully to test the relative import-
ance of environmental factors in IAA production.
Shokri and Emtiazi [28] revealed a maximum IAA
production by Rhizobium sp. at a concentration of 3
g/l of L-Trp after 3 days of incubation at 30°C. A
similar study by Leong [55] mentioned that the opti-
mal amount of IAA produced by Rhodopseudomonas
palutris was obtained after 2 days of incubation at
35°C in the presence of 5g/l L-Trp. Similarly, Ghosh
and Basu [56] showed that Rhizobium spp. isolated
from root nodules of Dalbergia lanceolaria produced
a maximum amount of IAA at a concentration of 2.5
g/l L-Trp. The use of experimental design allowed us
to obtain the highest yield of IAA by the strain 169,
which was higher than that obtained by the combin-
ation of this bacterial isolate with another one (122 +
169). Otherwise, a better result compared to previous
studies concerning incubation time and L-Trp con-
centration (1 day of incubation and L-Trp concentra-
tion of 1g/l) was detected. Moreover, the incubation
temperature obtained by the used central composite
design (36°C) was close to that obtained by Leong
[55]. The predictive response generated by the vali-
dated model under optimal parameters and the real
obtained yield under these conditions were so close.
We can, therefore, conclude that the precision of this
approach has been well checked.
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Conclusion

Indole-3-acetic acid is one of the main physiological ac-
tive hormones controlling various important processes
in plants. In this study, bacterial isolates were screened
in order to determine their ability for IAA production.
Then, the inoculation effect by isolates in pure culture
or in combination with Acacia cyanophylla seed’s ger-
mination was studied using the best performing isolates
in terms of IAA production. The optimization of this
phytohormone’s production was evaluated using a re-
sponse surface methodology based on the central com-
posite design on five factors. This method allowed us to
determine the optimal conditions necessary to obtain
the best IAA production (166 pg/ml). This yield, which
exceeds that obtained by the synergy between the best
strains producing IAA, has been experimentally verified.
Finally, this study has shown that experimental designs
provide a fast and relevant approach that can be used
for optimizing the production of other phytohormones
obtained from different strains.
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