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Abstract 

Background Viral infections cause damage and long‑term injury to infected human tissues, demanding therapy 
with antiviral and wound healing medications. Consequently, safe phytochemical molecules that may control viral 
infections with an ability to provide wound healing to viral‑induced tissue injuries, either topically or systemically, 
are advantageous. Herein, we hypothesized that epigallocatechin‑3‑gallate (EGCG), the most abundant polyphenol 
in green tea, might be effective as a wound healing, antiviral, and antifibrotic therapy.

Results The antiviral activities of EGCG against severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) 
and Herpes simplex virus type 2 (HSV‑2) as well as its wound healing activities against different monolayer tissue (con‑
tinuous and primary) systems were investigated. Consider its possible wound‑healing advantages as well. To deter‑
mine the safe concentrations of EGCG in green monkey kidney (Vero) and Vero‑E6 cell lines, MTT assay was performed 
and showed high  CC50 values of 405.1 and 322.9 μM, respectively. The antiviral activities of EGCG against SARS‑CoV‑2 
and HSV‑2, measured as half‑maximal concentration 50  (IC50) concentrations, were 36.28 and 59.88 μM, respectively. 
These results confirm that the EGCG has remarkable viral inhibitory activities and could successfully suppress the rep‑
lication of SARS‑CoV‑2 and HSV‑2 in vitro with acceptable selectivity indices (SI) of 11.16 and 5.39, respectively. In 
parallel, the EGCG exhibits significant and dose/time‑dependent anti‑migration effects in human breast cancer cells 
(MCF‑7), its resistant variation (MCF‑7adr), and human skin fibroblast (HSF) indicating their potential to heal injuries 
in different internal and topical mammalian systems.

Conclusions The EGCG has proven to be an efficient antiviral against SARS‑CoV‑2 and HSV‑2, as well as a wound‑
healing phytochemical. We assume that EGCG may be a promising option for slowing the course of acute cellular 
damage induced by systemic (Coronavirus Disease 2019 (COVID‑19)) or topical (HSV‑2) viral infections.

Keywords Green tea extract, EGCG , COVID‑19, Antiviral activity, Wound healing, Herpes simplex virus, Cellular injury

†Ahmed Mostafa, Gomaa Mostafa‑Hedeab and Abdou Kamal Allayeh 
contributed equally to this work.

*Correspondence:
Ahmed Mostafa
AElsayed@txbiomed.org; ahmed_elsayed@daad‑alumni.de
Gomaa Mostafa‑Hedeab
gomaa@ju.edu.sa
1 Disease Intervention and Prevention Program, Texas Biomedical 
Research Institute, San Antonio, TX 78227, USA
2 Center of Scientific Excellence for Influenza Viruses, National Research 
Centre, Giza 12622, Egypt
3 Pharmacology Department and Health Research Unit, Medical College, 
Jouf University, 11564 Skaka, Saudi Arabia
4 Surgery Department, Medical College, Jouf University, 11564 Sakaka, 
Saudi Arabia

5 Virology Department, Nawah Scientific Co, Almokattam Mall, Street 9, 
Egypt 11562, El Mokattam, Egypt
6 Department of Clinical Laboratory Sciences, College of Applied Medical 
Sciences, Jouf Uni‑Versity, 11564 Sakaka, Saudi Arabia
7 Department of Surgery, Orthopedic Division, College of Medicine, Jouf 
University, 11564 Sakaka, Saudi Arabia
8 Pharmacology Department, Medical and Clinical Research Institute, 
National Research Centre, Giza 12622, Egypt
9 Water Pollution Department, Virology Laboratory, National Research 
Centre, Dokki 12622, Giza, Egypt

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43141-023-00624-4&domain=pdf
http://orcid.org/0000-0002-2878-5714


Page 2 of 9Mostafa et al. Journal of Genetic Engineering and Biotechnology          (2023) 21:145 

Background
Antiviral therapy is the first control option to consider 
once a virus infection is established. All the steps in 
the virus life cycle ranging from entry to release can be 
explored as molecular targets for specific antiviral ther-
apy as well as virus-dependent cell targets for indirect 
antiviral therapy. Moreover, antiviral therapy should cer-
tainly be used if patients are at high risk for tissue injury 
via virus-induced cellular responses or if patients are 
immunocompromised.

SARS-CoV-2 is one of many viruses that infect the 
human respiratory system, causing symptoms ranging 
from modest upper airway involvement to life-threaten-
ing acute respiratory distress syndrome (ARDS). Lung 
consequences, as illustrated by the current COVID-19 
pandemic, include pneumonia and acute respiratory dis-
tress syndrome (ARDS) in critical cases [1, 24, 52]. Due 
to the combined effect of direct viral and indirect patient-
specific immune-mediated damage, the clinical picture 
of lung tissue destruction is difficult to anticipate. It is 
widely known that SARS-CoV-2 interacts with the angi-
otensin-converting enzyme 2 (ACE2), which is predomi-
nantly found in type II pneumocytes in the lungs. ACE2 
expression changes as a result of viral binding appear 
to be associated with increased vascular permeability, 
increased lung edema, increased lung injury, and over-
production of proinflammatory factors [16, 29]. In clini-
cal terms, the lungs become irritated and filled with fluid, 
resulting in breathing difficulties. Breathing issues in cer-
tain individuals can become serious enough to require 
hospitalization with an oxygen ventilator. Consequently, 
lung injury may take months to improve. Another poten-
tial COVID-19 consequence is sepsis, which occurs when 
an infection spreads through the circulatory system, 
causing tissue damage everywhere it goes. Sepsis, even 
if a patient survives, can cause long-term damage to the 
lungs and other organs [18–20].

On the other hand, Herpes simplex virus (HSV) is 
another prevalent viral disease globally. HSV type-1 
(HSV-1) infection occurs in or around the mouth and 
is mostly spread by oral-to-oral contact, whereas HSV 
type-2 (HSV-2) infection occurs sexually and causes 
genital herpes [42]. Both oral and genital herpes are usu-
ally asymptomatic. Nevertheless, they can cause pain-
ful blisters or ulcers, ranging from moderate to severe 
[4]. Although herpesviruses do not primarily target 
the lungs,under certain circumstances, several of them 
can cause interstitial pneumonia, bronchopneumonia, 
and ARDS. Infected persons commonly report tingling, 
stinging, or burning around their lips prior to the onset 
of sores. These symptoms may return regularly, with the 
frequency changing depending on the individual [32]. 
Besides, HSV infects the lower respiratory tract (LRT) of 

immunocompetent and immunocompromised patients 
[11, 9]. For instance, in many burned or intubated 
patients with squamous metaplasia of the respiratory epi-
thelium, the spreading of the virus to the lung is probably 
an extension or aspiration of oropharyngeal HSV, or via 
hematogenous spread [11].

In any case, the rising trend in the prevalence of viral 
diseases drives researchers to explore treatment solutions 
that not only inactivate the virus but also aid in the pro-
cess of regenerating wounded cells in order to mitigate 
the cellular damaging consequences of viral infection.

Natural flavonoids, a diverse set of polyphenolic sub-
stances found in plants, should be explored as a potential 
treatment for viral infections. For instance, the polyphenol 
epigallocatechin-3-gallate (EGCG), a major active ingredi-
ent in green tea, has been shown to have anti-inflamma-
tory [35], antioxidant [10], anti-fibrotic [37], antimicrobial 
[53] and antiviral activities [51]. In this study, we investi-
gated the possible use of EGCG to control viral infections 
with RNA and DNA model viruses of known viral-induced 
cell injuries. The antiviral activity against pandemic SARS-
CoV-2 and HSV-2 and the possible wound-healing activity 
following the induction of cell-monolayer injuries in vari-
ous mammalian systems were studied.

Results
The cytotoxicity (CC50) of EGCG on Vero and Vero‑E6 cell 
lines
The EGCG was serially two-fold diluted and added to the 
cell culture medium to examine its effect on the growth 
and viability of Vero and Vero-E6 cell lines. After 3 days 
of co-incubation, the cell viability of Vero and Vero–E6 
cells was determined using MTT assay. The mean dose–
response curve of three different experiments was used to 
calculate the 50% cytotoxic and growth inhibition doses. 
The half-maximal cytotoxic concentrations of EGCG was 
determined to be 322.9 and 405.1 μM in Vero and Vero-
E6 cells, respectively (Fig. 1).

EGCG exerts antiviral activity against SARS‑CoV‑2 and HSV‑2 
in vitro
The cytopathic inhibition experiment was used to inves-
tigate EGCG’s antiviral activity against SARS-CoV-2 and 
HSV-2. As a control, untreated virus-infected cells were 
employed in the test. The 50% inhibitory concentration 
 (IC50) values for SARS-CoV-2 and HSV-2 were deter-
mined to be 36.28 and 59.88 μM, respectively (Fig. 1).

The selective indices are calculated by dividing the 
 CC50 by  IC50 (SI =  CC50/IC50) values and are found to 
be 11.16 and 5.39 for SARS-CoV-2 and HSV-2, respec-
tively (Table 1). At non-cytotoxic EGCG concentrations, 
SARS-CoV-2 infectivity was reduced by more than 59%, 
while HSV-2 infectivity was decreased by 41%.
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Stage of antiviral activity
To confirm whether the anti-SARS-CoV-2 and anti-
HSV-2 activity of EGCG can be attributed to the inhibi-
tion of the virus in a cell-free status or virus adhesion to 
the host cell receptors or replication inside the host cell, 
plaque reduction assays were performed as previously 
described [14]. Consequently, the EGCG affected both 
viruses mainly by targeting them in a cell-free status/viru-
cidal effect (upto 100% inhibition of SARS-CoV-2 virus 
and 69.97 ± 7.1% of HSV-2), followed by interference 

with viral adsorption (average viral inhibition equals 
80.1 ± 5.3% for SARS-CoV-2 and 35.1 ± 6.21 for HSV-2). 
The interference of EGCG with the replication efficiency 
of both viruses was low (average viral inhibition equals 
17.44 ± 8.5% for SARS-CoV-2 and 15.03 ± 2.2% for HSV-
2), when compared to the other two mechanisms or rep-
lication-cycle stages (Fig. 2 a & b).

EGCG exerts an anti‑migration effect against MCF‑7 and its 
resistant variant (MCF‑7adr) cells
The anti-migration effects of EGCG against MCF-7 and 
its resistant variant MCF-7adr were assessed in-vitro 
using a wound healing assay to reflect the potential of 
EGCG in suppressing tumor invasion. MCF-7 and MCF-
7adr cells were treated with 1 μM and 10 μM of EGCG for 
24 h (Day-1), 48 h (Day-2), and 72 h (Day-3), and wound 
closure was compared to the control untreated group. In 
MCF-7 cells, after 24 h treatment with EGCG, no signifi-
cant change in wound gap was observed between treated 

Fig. 1 Cytotoxicity and antiviral activity of EGCG against SARS‑CoV‑2 (a) and HSV‑2 (b). The Cytotoxicity and antiviral activity were determined 
in Vero E6 and Vero cells against NRC‑03‑nhCoV and HSV‑2, respectively. Half maximal cytotoxic  (CC50) and inhibitory  (IC50) concentrations were 
calculated using nonlinear regression analysis of GraphPad Prism software (version 5.01) by plotting log inhibitor versus normalized response 
(variable slope)

Table 1 Inhibitory Concentration  (IC50) and selective index (SI) 
for EGCG against both viral infections

Sample Cell CC50 (μM) Virus IC50 (μM) SI

EGCG Vero‑E6 405.1 SARS‑CoV‑2 36.28 11.16

Vero 322.9 HSV‑2 59.88 5.39

Fig. 2 Stage of antiviral activity of EGCG. The EGCG (50 μM) has been tested against SARS‑CoV‑2 (a) and HSV‑2 (b) at different stages of the viral 
replication cycle including cell‑free status “virucidal effect”, adsorption inhibition, and interference with viral replication
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and control cells. Further exposure of cells to EGCG 
significantly delayed wound closure compared to con-
trol untreated cells. After 48  h, EGCG (10  μM) showed 
a significant migration inhibition in MCF-7 cells (wound 
gap of 263.7 ± 9.3  μm) compared to control untreated 
cells with wound gap of 227.9 ± 17.0 μm. Prolonged expo-
sure of cells to both 1 μM and 10 μM of EGCG for 72 h 

significantly delayed the cell migration with a wound 
gap of 156.3 ± 12.6  μm-wide and 202.9 ± 37.6  μm-wide, 
respectively, while the gap in control untreated cells was 
122.3 ± 15.2 μm (Fig. 3 a & b).

In MCF-7adr cells, EGCG significantly delayed wound 
closure compared to untreated control cells as early as 
after 24 h exposure. Wound gap distances were found to 

Fig. 3 The effect of EGCG on MCF‑7 and MCF‑7adr cell migration. MCF‑7 and MCF‑7adr cell monolayer sheets were scratched and treated with EGCG 
(1 and 10 μM). Images for the wound gap distance were taken for treated and control cells after 24 h, 48 h, and 72 h (a & c). Wound gap distances 
were optically measured and displayed over time (b & d). Data are shown as mean ± SD; n = 3. *P < 0.05, versus the control group
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be 197.6 ± 38.5  μm-wide and 186.3 ± 17.1  μm-wide after 
treatment with 1 μM and 10 μM of EGCG, respectively, 
compared to wound gap of 138.6 ± 23.4 μm for untreated 
control cells. After 48  h, EGCG (1  μM 10  μM) showed 
further significant migration inhibition with a wound 
gap of 94.6 ± 13.9  μm-wide and 108.6 ± 26.9  μm-wide, 
respectively, while the gap in control untreated cells was 
41.6 ± 29.4  μm (Fig.  3 c & d). Therefore, it can be con-
cluded that EGCG exhibited a significant dose/time-
dependent anti-migration effect against MCF-7 cells and 
its resistant variant (MCF-7adr).

EGCG facilitates wound healing effect using normal human 
skin fibroblast cells
Another common interpretation for the scratch assay is 
the wound healing capacity when the drug under inves-
tigation is tested against normal skin fibroblast cells. 
Herein, we investigated the wound healing capacity 
of EGCG (1 and 10  μM) against HSF cells (human skin 
fibroblast). EGCG (10 μM) enhanced the wound closure 
as early as after 24 h with a wound gap of 119.7 ± 3.3 μm 
compared to 130.0 ± 24  μm for untreated control fibro-
blast. After 48  h, both concentrations of EGCG (1  μM 
and 10 μM) showed a total wound closure compared to 
a remaining wound gap of 48.3 ± 9.8 μm in the untreated 
control fibroblast cells (Fig.  4 a & b). Therefore, and in 
contrast to cancer cells, EGCG facilitates wound healing 
in normal fibroblast cells in a dose and time-dependent 
manner.

Discussion
Acute systemic and topical viral infections including 
COVID-19 and herpes are usually associated with cell 
injuries and wounds that persist for longer times after 
termination of viral replication and shedding [34]. In 
addition, the COVID-19 pandemic is meaningfully asso-
ciated with many social factors including depression that 
affect immune fitness [21], delaying the wound healing 
process [3, 40].

Since the emergence of COVID-19, the interest is 
growing among researchers to develop effective antivirals 
to alleviate disease progression, reduce viral replication 
and infection spreading. Nevertheless, the pathologi-
cal picture of COVID-19 is usually associated with dif-
fuse alveolar damage (DAD) that demand precise and 
immediate healing [39]. The abnormal wound healing of 
this damage may result in additional severe scarring and 
fibrosis than other forms of the life-threatening ARDS 
[30]. The stepwise recovery of this damage demands a 
dynamic innate and acquired immune responses and epi-
thelial cells regeneration and induction via wound-heal-
ing phytochemicals rather than administrating epithelial 
growth factors that are more likely to be detrimental and 
could increase the viral load via the upregulation of the 
ACE2 expression on the host cells [30].

On the same hand, Herpes simplex virus is capable 
of causing topical partial-thickness wounds [38]. Simi-
larly to COVID-19, herpes simplex virus infection delays 
healing of oral excisional and extraction wounds in 

Fig. 4 The effect of EGCG on HSF cell migration. HSF cell monolayer sheets were scratched and treated with EGCG (1 and 10 μM). Images 
for the wound gap distance were taken for treated and control cells after 24 h, 48 h, and 72 h (a). Wound gap distances were optically measured 
and displayed over time (b). Data are shown as mean ± SD; n = 3. *P < 0.05, versus the control group
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experimental animals [13]. To these points, we sought to 
identify a safe phytochemical molecule that can serve as 
antiviral medication with the ability to aid in healing the 
infection-mediated epithelial/endothelial injury.

Epigallocatechin-3-gallate (EGCG), a form of catechin, 
is a well-known natural antiviral drug with the potential 
to inhibit numerous viruses as well as reduce oxidative 
damage and promote lung regeneration capacity [27, 31, 
33, 45]. The EGCG has an inhibitory impact on a wide 
variety of pathogens and functions as a broad-spectrum 
antiviral agent. It is most common in the following loca-
tions: (a) EGCG inhibits cytomegalovirus [22], Zika virus 
[5], and human immunodeficiency virus [12, 26] aggres-
sively during early infection,(b EGCG inhibits viral rep-
lication, including influenza virus [23], enterovirus [15], 
and hepatitis virus [57],and (c EGCG inhibits pathogens 
indirectly by regulating immune inflammation and oxida-
tive stress [55].

Herein, the wound healing and antiviral effects of 
EGCG on multiple cell lines, as well as two viral patho-
gens, COVID-19 and HSV-2, were accordingly investi-
gated. In parallel, EGCG showed remarkable antiviral 
efficacy against SARS-CoV-2 (RNA virus) and HSV-2 
(DNA virus) at safe concentrations. The data in this study 
confirmed that EGCG has high  CC50 values reflecting 
its low cytotoxicity. EGCG has low inhibitory concen-
tration 50  (IC50) against SARS-CoV-2 and HSV-2 (36.28 
and 59.88  μM, respectively), indicating its remarkable 
antiviral activity against RNA and DNA model viruses. 
The investigation of the stage at which EGCG can impair 
viral replication cycle, it was found in this study that it 
affects the viral particle directly “virucidal effect” as well 
as interferes with the virus ability to adsorb to the host 
cell receptors. Consistently, this study confirms that 
EGCG exhibits broad antiviral activity against numerous 
viruses [25, 28, 36, 49, 54]. It has previously been shown 
to prevent the attachment of hepatitis viruses, influenza, 
reovirus, coronavirus and vesicular stomatitis virus by 
acting directly on the virions or interacting with surface 
proteins [8, 25, 58]. These prior studies back up our find-
ings and indicate that EGCG inhibits the propagation of 
a variety of viruses, including RNA and DNA viruses. 
EGCG has also been proposed to inhibit 3CL-Protease 
of SARS-CoV-2 [17]. The IC50 value as an indicator 
of the viral inhibitory effect was found to be variable 
against different viruses including SARS-CoV-2 [28]. This 
shows that EGCG can hinder the infectivity of different 
viral pathogens, however the wide disparity in  IC50 val-
ues could be due to a number of factors such as EGCG 
extraction technique, cellular and viral model variations, 
or antiviral methods used.

Furthermore, EGCG has been shown and confirmed 
to have a wide anti-lung fibrosis impact. To the best of 

our knowledge, there is no reported relationship between 
COVID-19 induced lung fibrosis and type of lung can-
cers [6, 50]. Pulmonary fibrosis, for instance, develops 
in COVID-19 patients because SARS-CoV-2 infection 
induces a massive increase in neutrophil infiltration 
into the lungs, leading to TGF production. An unregu-
lated surge in active TGF-beta 1, aided by proinflam-
matory cytokines such as TNF, IL-6, and IL-1, induces 
fast and widespread edema and fibrosis and eventually 
clogs the airways resulting in lung functional failure 
[6]. Some studies investigated the protective impact of 
EGCG against lung fibrosis and found that it enhanced 
lysosomal hydrolases and ultrastructural changes in the 
lungs of a bleomycin-induced rat model of lung fibrosis 
[46–48]. Furthermore, downregulating TGF-β1 signal-
ing inhibited fibroblast activation and collagen buildup, 
providing solid evidence that EGCG is an effective anti-
fibrotic medication [6]. In line with previous findings, 
the documented antioxidant, anti-inflammatory, antimi-
crobial, angiogenesis and antifibrotic properties of the 
EGCG potentiate its activity at diverse stages of topical 
wound healing including hemostasis, inflammation, pro-
liferation and tissue remodeling [56, 59].

Over and above, EGCG is known to possess potential 
chemopreventive as well as chemotherapeutic actions 
[7]. In the current study, EGCG showed significant anti-
proliferative as well as anti-invasive properties in both 
naïve (MCF-7) and resistant (MCF-7Adr) tumor cells. 
Breast adenocarcinoma cells were used herein as a proof 
of principle and to compare the potential effect of EGCG 
on sister naïve and resistant cell lines.

Conclusions
To sum up, the potential inhibitory impacts of EGCG 
as an antiviral therapy option against SARS-CoV-2 and 
HSV-2 were confirmed in this study. In addition to its 
antiviral characteristics, EGCG has demonstrated potent 
and dose/time-dependent anti-invasion effects on malig-
nant cell lines. On the top of these therapeutic effects, 
EGCG showed enhancement in wound healing prop-
erties on normal fibroblast cells which can cushion all 
previously mentioned effects’ collateral damages. This 
emphasizes that the EGCG can be further investigated 
in vivo in preclinical studies as a trial to be applied as a 
candidate potentially safe antiviral and wound-healing 
phytochemical in COVID-19 and HSV-2 infections.

Methods
Cell Culture, EGCG, and Viruses
Nawah Scientific Inc. (Mokattam, Cairo, Egypt) pro-
vided the African green monkey kidney (Vero), 
(Vero-E6), human breast cancer (MCF-7), doxorubicin-
resistant breast cancer (MCF-7Adr), and human normal 
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skin fibroblast (HSF) cell lines, which were cultured in 
DMEM (Dulbecco’s Modified Eagle’s Medium), Gibco, 
USA. The culture media was supplemented with 10% 
fetal bovine serum (FBS) and 100 units/mL penicillin/
streptomycin (PS). The cells were incubated at 37 oC in a 
humid atmosphere with 5%  CO2. Sigma-Aldrich (Seelze, 
Germany) provided the EGCG, which was diluted to 
stock solutions with PBS and kept at 80° C for all subse-
quent studies.

Nawah-Scientific Co. for Scientific Research Services, 
Egypt generously contributed HSV-2 for in vitro viral chal-
lenge. The hCoV-19/Egypt/NRC-3/2020 SARS-CoV-2 
(NRC-03-nhCoV) was obtained from the virus collections 
of the Centre of Scientific Excellence for Influenza viruses 
at the National Research Centre, Egypt. The viral titers 
were calculated using the limit-dilution method and were 
expressed as a 50% cell culture infective dosage  (TCID50) 
of 1 ×  104 (SARS-CoV-2), and 1 ×  106 (HSV-2), respectively. 
Virus stocks were kept at 80 °C until they were used.

Cytotoxicity of EGCG on Vero and Vero‑E6 Cell lines
Based on prior reports [41, 43], cells were seeded in a 
96-well plate at a density of 2 ×  105 cells/well and then 
treated for 72  h at 37  °C in a humidified environment 

of 5%  CO2 with two-fold concentrations of EGCG 
(7.5–0.0146  mM). Following the incubation period, 
the medium was replaced with 100 μl of MTT solution 
(5 mg/ml) and incubated at 37 °C for 4 h. After 30 min 
at 37  °C, the MTT solution was changed with 50 μl of 
acidified isopropanol. The absorbance at 570  nm was 
then measured to estimate the maximum concentration 
of EGCG that was not toxic to the cells using the next 
equation. (A-B/A) × 100 was used to calculate the 50% 
cytotoxic concentration  (CC50), where A & B are the 
means of three  OD570 measurements of untreated and 
treated cells, respectively.

Efficacy of EGCG against SARS‑CoV‑2 and, HSV‑2 challenges 
in vitro
To investigate the antiviral activity of EGCG against 
SARS-CoV-2 and HSV-2, the half maximal inhibi-
tory concentration 50  (IC50) were estimated as previ-
ously described [14]. Briefly, Vero and Vero-2 confluent 
96-well plates were infected for 60  min at 37  oC with 
100  μl of stock SARS-CoV-2, and HSV-2 viruses. The 
EGCG was then added in 100  μl increments. Three 
wells were utilized for each dilution, and 100 μl of the 

maintenance medium was added to each well. Plates 
were finally incubated for three days until cytopathic 
effect (CPE) was observed. Subsequently, the cells were 
fixed with 100 μL/well 10% fixing solution and incu-
bated for 2  h at room temperature, then the super-
natants were discarded and 50  μl/well of 0.1% crystal 
violet stain were added for 10  min. The dried stained 
treated and control wells were then supplemented 
with 180  μl/well of absolute methanol and shaked for 
30 min. The optical density (OD) was then measured at 
570 nm using ELISA plate reader. A plot of cell viabil-
ity (%) and viral inhibition (%) versus concentration for 
each EGCG was represented using GraphPad prism 5 
software.

Mode/Stage of antiviral action
To define the stage at which EGCG is affecting SARS-
CoV-2 and HSV-2, three main stages of the viral repli-
cation cycle including (a) virucidal effect; (b) adsorption 
inhibition; and (c) replication interference, were investi-
gated by plaque reduction assay of action as previously 
described [14]. The EGCG was applied in the three pro-
tocols at an effective concentration of 100  μM (<  CC50 
and >  IC50 values). The percent of viral reduction was cal-
culated using the following equation:

Wound healing assay
Wound healing assay (scratch assay) was used herein to 
assess the anti-migration effect of EGCG against MCF-7 
(human breast adenocarcinoma cells), and its resistant 
variant MCF-7adr and HSF (human skin fibroblast) cells. 
Briefly, 1 ×  105 cells were seeded in a 6-well plate and main-
tained until a minimum of 80% confluent monolayer cell 
sheet. Afterward, monolayer cell sheets were scratched 
with a sterile pipette tip to generate a 40 μm-wide wound, 
and scratched cell debris was washed out with PBS. Fresh 
media or media containing EGCG were added to cells and 
incubated for a further 72  h. Wound closure was moni-
tored every day by collecting digitized images using TCM-
400 inverted microscope (LaboMed, Fremont, CA, USA) 
coupled with a Digital Still Camera (35 mm SLR camera) 
for scratch width calculation [2].

Statistical analysis
All experiments were performed in triplicate and cal-
culations were carried out using GraphPad PRISM and 
linear regression analysis (Version 8.0.1, GraphPad Soft-
ware, San Diego, CA, USA). The selective index (SI) was 
derived using  CC50/IC50 [44].

Plaque reduction (%) =
Count of untreated virus (control)− Count of treated virus

Count of untreated virus (control)
×100
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