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Abstract 

Background Cellulase is an important bioprocessing enzyme used in various industries. This study was conducted 
with the aim of improving the biodegradation activity of cellulase obtained from the Bacillus subtilis AG-PQ strain. 
For this purpose, AgO and FeO NPs were fabricated using  AgNO3 and  FeSO4·7H2O salt respectively through a hydro-
thermal method based on five major steps; selection of research-grade materials, optimization of temperature, pH, 
centrifuge, sample washed with distilled water, dry completely in the oven at the optimized temperature and finally 
ground for characterization. The synthesized NPs were characterized by scanning electron microscope (SEM), energy 
dispersive X-ray (EDX), and X-ray diffraction (XRD) to confirm the morphology, elemental composition, and structure 
of the sample respectively. The diameter of the NPs was recorded through SEM which lay in the range of 70–95 nm.

Results Cultural parameters were optimized to achieve better cellulase production, where incubation time of 56 h, 
inoculum size of 5%, 1% coconut cake, 0.43% ammonium nitrate, pH 8, and 37 °C temperature were found optimal. 
The enhancing effect of AgO NPs was observed on cellulase activity (57.804 U/ml/min) at 50 ppm concentration 
while FeO NPs exhibited an inhibitory effect on cellulase activity at all concentrations. Molecular docking analysis 
was also performed to understand the underlying mechanism of improved enzymatic activity by nanocatalysts.

Conclusion This study authenticates AgO NPs as better nanocatalysts for improved thermostable cellulase biodegra-
dation activity with the extraordinary capability to be potentially utilized in bioethanol production.
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Graphical Abstract

Background
Carboxymethyl cellulase (CMCase) belongs to a class of cel-
lulase enzymes known as endo -1, 4- β-glucanase, which can 
convert cellulase into soluble glucose [1]. Microbial cellulase 
has a number of applications in various industries, includ-
ing the pulp and paper industry, textile industry, bioethanol 
industry, wine and brewery industry, food processing indus-
try, animal feed industry, detergent industry, waste manage-
ment, and agriculture industry [2]. Cellulase is an inducible 
enzyme that is synthesized by a wide variety of microorgan-
isms including fungi and bacteria, and they can be anaero-
bic, aerobic, thermophilic, or mesophilic  [3]. The costs of 
these enzymes produced by fungi are very high and there-
fore bacteria are preferred because they have a short genera-
tion time and high growth rate as compared to fungi [4, 5]. 
Bacteria are successful candidates for the industrial produc-
tion of cellulase enzymes because they have the capability to 
produce cellulases that can tolerate extreme conditions such 
as acid, alkali, and thermostability [6]. The majority of these 
bacteria are found and isolated from animal waste, compost, 
soil, and sugar cane [7]. Various bacteria are reported for 
the production of cellulase such as Bacillus sp. including B. 
brevis, B. cereus, B. amyoliquefaciens DL-3, B. subtilis YJ1, B. 
vallismortis RG-07, B. megaterium, B. pumilus, and B. cir-
culans [1, 8] Gram positive B. subtilitis has been extensively 
studied in past years [9]. They are well characterized and 
have remarkable fermentation properties and a high yield of 
production. They also produce non-toxic by-products and 
have high adaptability to environmental changes [10, 11]. 
Previous studies have reported the production of CMCase 
from Bacillus subtilitis [12–14].

Cellulosic biomass is composed of lignin, cellulose, and 
hemicellulose, which is one of the most abundant renewable 
resources [15]. Cellulosic biomass can be transformed into 
a variety of products, including paper and pulp, animal feed 
and textiles, using various technologies, and in particular 

Biotechnology. The abundant and renewable cellulosic bio-
mass also represents a potential alternative resource to fossil 
fuels, with rising global demands for energy [16]. Cellulase 
(EC 3.2.1.4) first hydrolyzed cellulosic biomass to glucose 
for conversion into other products, and then different bio-
logical or chemical processes could be performed. The 
degradation of cellulosic material has therefore received 
considerable attention for improved cleaning process  [17]. 
Different methods for hydrolyzing cellulase have been pro-
posed, including steam explosion, acid-activated montmo-
rillonite catalysts, alkaline, acid, enzymatic hydrolysis, and 
microbiological methods  [18, 19]. In nature, the enzyme-
mediated cellulase breakdown requires various types of cel-
lulolytic enzymes, the major ones being β-1,4-exoglucanase 
(EC 3.2.1.91), β-1,4-endoglucanase (EC 3.2.1.4), and 
β-glucosidase (EC 3.2.1.21) [20]. The challenges to industrial 
applications of these enzymes are high cost and low produc-
tion yield that need to be overcome with improved cellulase 
production [5, 21]. One of the limiting factors for biofuel 
production from cellulose feedstocks is the inefficient trans-
formation of cellulase into fermented sugars. New ways of 
enhancing the kinetics and stability of cellulases are crucial 
to the economic feasibility for production of biofuel [22].

Metal ions have the ability to interact with a carboxylic 
acid or amine group of amino acids and in this way, they 
activate or inhibit the activity of the enzyme [1, 5]. Several 
studies have shown the role of metal ions in the activation 
or inhibition of microbial cellulases [23–25]. Nanopar-
ticles can play a significant role in improving the pH and 
thermal stability of the cellulase enzymes due to various 
unique chemical and physical characteristics [26] such as 
high surface reaction activity, large surface-to-volume ratio, 
strong adsorption ability, and high catalytic efficiency [18, 
19]. In industry, nanoparticles have proven to be benefi-
cial catalysts [26]. Several studies have reported the use of 
nanoparticles to enhance the production, activity, pH, and 
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thermal stability of cellulose [18, 19]. Biosynthesized sil-
ver nanoparticles were used as nanocatalysts and showed 
a two-fold increase in the cellulose degradation activity 
of cellulase [26]. Carboxymethyl cellulose (CMC) assay 
revealed an increase in the activity of carboxymethyl cellu-
lase (CMCase) in the presence of CaCl2 nanoparticles [27].

By considering the industrial importance of cellulase, 
the presented study was conducted for the production 
and characterization of cellulase Bacillus subtilis AG-PQ. 
Cultural parameters were optimized to achieve maxi-
mum cellulase yield by Bacillus subtilis AG-PQ strain 
using solid-state fermentation and submerged fermenta-
tion. Further, the study explored the silver and iron NPs 
effect on the biodegradation activity of cellulase. This 
study will help understand NPs’ interaction with cellulase 
for its beneficial and effective role in various industries 
such as paper and pulp, food, and textile industries.

Methods
This study was conducted in the Applied Microbiol-
ogy and Biotechnology Lab (AMBL) at the International 
Islamic University, Islamabad, Pakistan. All the chemicals 
used in this study were of analytical grade.

Synthesis of silver oxide and iron oxide nanoparticles 
by hydrothermal method
A hydrothermal technique was adopted to synthesize 
silver oxide and iron oxide nanoparticles (NPs) for our 
desired morphology at the nanoscale. The advantage of 
such a technique over others was its ability to make the 
desired NPs in a pure crystalline phase in large quanti-
ties. Such NPs in pure and controlled size were obtained 
by adjusting the factors that affect the morphology of 
NPs during the experimental process like temperature, 
pressure, and reactants, also research-grade equipment 
played a vital role that was used during the hydrother-
mal method; Furnace, Oven, Teflon, Autoclave, Cen-
trifuge Machine, digital balance, magnetic stirrer and 
mortar, and pestle [28, 29]. To synthesize pure crystalline 
of required NPs, the hydrothermal technique is based 
upon six major steps; (i) research-based materials selec-
tion; (ii) optimization of molarity and pH of the solution; 
(iii) precursors were mixed uniformly through magnetic 
stirrer; (iv) adjust temperature for the reaction; (v) reac-
tion proceed and pressure sustained in the autoclave; 
and (vi) centrifuge the sample and completely dried in an 
oven [30, 31]. To study and improve the biodegradation 
activity of cellulose we synthesized silver oxide and iron 
oxide NPs using a hydrothermal technique. For such a 
project, research-grade salt 1 M of  AgNO3 was selected 
and dissolved in 50  ml distilled water. The precursor 
AgO was prepared by the addition of 2 M aqueous solu-
tion of NaOH dropwise with vigorous constant stirring 

(1300 rpm) on a hot plate at 60 °C for 1 h. Then continu-
ous precipitate of AgO was synthesized till the reaction 
stopped at pH = 11.4. The resulting colloidal mixture was 
put into Teflon. The Teflon was shifted and placed into 
the stainless-steel autoclave. Then the autoclave was kept 
in a conventional oven for 24 h at 180 °C. Subsequently, 
the colloidal were shifted to the test tube to centrifuge 
for 2  h. After centrifuge, the sample (supernatant) was 
washed with distilled water a couple of times and also 
washed a minimum of two times with ethanol to remove 
the impurities from the NPs. The resultant product was 
dried in an oven for 5 h at 100 °C. The product was then 
ground for 30 min. At the end of grinding the sample was 
ready for characterization [32]. The iron oxide NPs were 
synthesized in a similar manner as explained above for 
silver oxide NPs. For such NPs, the research-grade salt 
1 M  FeSO4·7H2O was selected and dissolved into 50 ml 
distilled water. The AgO and FeO NPs were characterized 
by scanning electron microscope (SEM), Energy Disper-
sive X-ray (EDX), and X-ray diffraction (XRD). The mor-
phology and elemental compositional were determined 
by using Hitachi SU6600 scanning electron microscope 
(SEM), and energy dispersive X-ray spectroscopy (EDX). 
The structural composition was confirmed from Panalyt-
ical X-pert pro MPD X-ray diffraction (XRD).

Sampling and isolation of microorganisms
Healthy soil samples were collected from the Agriculture 
region (Latitude  33o 64′ 98′, Longitude 73° 03′ 02′) of 
Islamabad, Pakistan in sterilized glass bottles and trans-
ported aseptically to a laboratory for further processing. 
The samples were diluted up to  10−10 and suspended 
on an agar plate supplemented with 0.5% peptone, 0.5% 
yeast extract, Tris–HCl buffer of pH 9, and NaCl with 2% 
agar [30]. The inoculated plates were incubated at 37 °C. 
Each distinct colony was picked and sub-cultured again 
on above mentioned supplemented agar plates to obtain 
a pure culture. Morphological and biochemical charac-
terizations were performed to identify the isolated bac-
terium and further screened for cellulase activity by using 
submerged fermentation [15].

Morphological, biochemical, and molecular identification
The isolated strain was observed under the light micro-
scope (LM) with 50–100 × resolution. Morphological 
and physiological characteristics of bacterial strain were 
examined based on shape, color, respiration, pH, and 
optimum temperature for proper identification [31]. Dif-
ferent biochemical tests including oxidase test, catalase 
test, Simmon citrate test, urease test, Voges Proskauer 
test, methyl red test, indole test, hydrogen sulfide, acid 
formation from sugars, and OF (oxidation/fermenta-
tion) test were performed to identify bacterial strain 
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[31–33]. For molecular identification, the genomic DNA 
was isolated by phenol–chloroform method and the 
16S rRNA region was amplified by PCR using univer-
sal 27f and 1492r primer pair [34]. The amplified region 
was sequenced commercially (Macrogen Korea). Sub-
sequently, the raw sequenced data were assembled and 
analyzed with BioEdit version 7.1.9 [35]. The sequence 
was submitted to the NCBI database under the accession 
number MG662180. Phylogenetic analysis was carried 
out by using the obtained sequence with previously pub-
lished 16S rRNA sequences of Bacillus sp. retrieved from 
GenBank (n = 31). The multiple sequence alignment was 
analyzed to construct a maximum likelihood tree with 
1000 bootstrap replicates using the software MEGA-7 
[36].

Enzyme and protein assay
The spectrophotometric assay performed to quantify 
the cellulase activity with a cellulose substrate using the 
method given by Miller [37]. The reaction mixture con-
sisted of 0.5 ml of a crude enzyme, 0.5 ml of 0.5% cellu-
lose, and 1 ml of 50 mM sodium phosphate (pH) 8.0 and 
was subjected to incubation at 50 °C for 20 min. After the 
incubation period was over, 1 ml of Dinitrosalicylic acid 
(DNS) was added to terminate the reaction. The mixture 
was boiled for 5  min and the optical density (OD) was 
measured at 540 nm with a spectrophotometer (UV-1700 
APC). Bradford method [38] was used to assess the pro-
tein content and the obtained results were accessed by 
measuring absorbance in a spectrophotometer (UV-1700 
APC) at 590 nm.

Optimization of the time course, medium, and inoculum 
size for cellulase production
One factor at a time approach was used for the opti-
mization of cellulase production from Bacillus subtilis 
AG-PQ. Four different inoculum concentrations (2.5%, 
5%, 7.5%, and 9%) were prepared and added into a 250-ml 
Erlenmeyer flask containing 100  ml production media. 
Five different types of media were tested to optimize the 
best fermentation medium for the maximum yield of cel-
lulase. All these media were inoculated with optimized 
culture conditions. All experiments were performed in 
triplicate and bars displayed mean and S.D.

Effects of culture conditions on cellulase production
Economic carbon sources such as agricultural waste 
were utilized to make the cellulose production process 
cost-effective. The effect of economic carbon sources 
such as rice husk, corn cob, cellulose, wheat bran, and 
coconut cake at 2% concentration was examined for 
improved cellulase production [39]. Different nitrogen 
sources such as urea, ammonium sulfate, diammonium 

phosphate, ammonium chloride, and ammonium nitrate 
were added to the fermentation medium to observe 
their effect on cellulase production [40]. The pH of the 
production medium was adjusted to 3–8 by using 0.1 N 
sodium phosphate buffer and 0.1 N citric acid Vyas et al. 
[41] to investigate the influence of pH on cellulose yield. 
In order to examine the effect of temperature, fermenta-
tion was carried out at temperatures ranging from 25 to 
40  °C to optimize the best-suited temperature for cellu-
lase production.

To evaluate the effect of silver (Ag) and iron (Fe) nano-
particles on CMCase production from isolated strains, 
various concentrations of these nanoparticles (10 to 
100  ppm) were added to the fermentation media. The 
enzyme assay and protein estimation were performed 
after every 8  h interval for quantification of cellulase 
activity and protein content.

Partial purification and characterization of cellulase 
enzyme
The ammonium sulfate precipitation (APS) method was 
used for the partial purification of the enzyme accord-
ing to the method described by Gomori, [42]. The crude 
extract was treated with different concentrations of APS 
(20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%) to obtain the 
purified fraction of cellulase [43]. The precipitates were 
dissolved in 10  mM phosphate buffer (pH 8) and sus-
pended in a dialyzing membrane. This membrane dia-
lyzed against the same and was kept in a refrigerator at 
4 ℃ for 24  h. Various concentrations of cellulose (sub-
strate) were added to the reaction mixture to examine 
the effect of substrate concentration on cellulase activity 
[43, 44]. The effect of pH and temperature on cellulase 
activity was determined at various pH values (4–9) and 
temperatures (30–65 °C). To investigate the effect of sil-
ver oxide (AgO) and iron oxide (FeO) nanoparticles on 
cellulase activity, various parts per million (ppm) concen-
trations (10–70 ppm) of these nanoparticles were added 
to the reaction mixture [45]. Lineweaver–Burk plot was 
plotted to calculate the Km and Vmax values.

Molecular docking sides of Ag and Fe nanoparticles 
with cellulase activity
To predict the preferred binding sites and binding mode of 
Ag and Fe with cellulase enzyme Auto Dock Vina tool was 
used by Trott and Olson [46]. The structures of Ag and Fe 
were obtained from PubChem (https:// pubch em. ncbi. nlm. 
nih. gov). The 3D structure of CMCase (PDB ID: 3PZU) was 
obtained from Protein Data Bank https:// www. rcsb. org/ 
struc ture/ 3PZU. Before docking analysis, water molecules 
were removed from the protein. To determine the bind-
ing sites on protein, Ag, and Fe molecules were allowed to 
move within the whole protein region. The output from 

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://www.rcsb.org/structure/3PZU
https://www.rcsb.org/structure/3PZU
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AutoDock Vina was further analyzed with PyMOL (Ahmad 
et al. [5] used for the structural representation of figures.

Results
Synthesis and characterization of silver and iron oxide NPs
The morphology and elemental composition of synthe-
sized silver and iron oxide nanoparticles (NPs) exam-
ined through a scanning electron microscope (SEM) 
and energy dispersive X-ray analysis (EDX) are shown 
in Fig.  1, where surface morphology confirming the 
hexagonal and circular shape of silver oxide and iron 
oxide nanoparticles is evident (Fig.  1a, b). The impu-
rities-free NPs with smooth uniform grain dispersions 
and surfaces can be seen. The diameter recorded for 
these NPs was in the range of 70–95 nm. The elemen-
tal composition of these nanoparticles was confirmed 
through EDX as shown in Fig. 1c, d. The different peaks 
are also shown in Fig. 1c, d because the gold was sput-
tered on top of NPs as a conducting material before 
SEM characterization.

Morphological, biochemical, and molecular identification 
of bacterial strain
The isolated bacterium was identified as Bacillus subti-
lis based on morphological, biochemical, and molecu-
lar characterization, and the strain was designated as 
AG-PQ. The data of morphological and biochemical tests 
for the strain Bacillus subtilis AG-PQ (MG662180) is 
presented in Table 1.

The amplified 16S rRNA region of Bacillus subtilis 
genomic DNA, ~ 1000 base pairs. The data presented in 
the NJ tree (Fig. 2) based on the 16S rRNA gene shows 
the dispersion of isolated bacterial strains throughout the 
clades corresponding to other bacterial strains. The tree 
indicated that all the bacterial strains form a well-sup-
ported group.

Effects of cultural parameters on cellulase production
The effect of critical cultural parameters was optimized 
that can influence the cellulase production by B. subti-
lis AG-PQ using submerged fermentation, the optimi-
zation of culture media composition according to the 
Ahmad et  al. [5] design of experimental methodology. 

Fig. 1 SEM and EDX micrographs of nanoparticles. a SEM micrograph of silver oxide (AgO). b SEM micrograph of iron oxide (FeO). c EDX 
micrograph of (AgO) nanoparticles. d EDX micrograph of (FeO) nanoparticles
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Table 1 Identification of Bacillus subtilis strain on the basis of biochemical tests in comparison with B. subtilis BTN7A

S/N Biochemical test Bacillus subtilis AG-PQ Bacillus subtilis TP4-2 Bacillus subtilis BTN7A Bacillus sp.38b

1 Gram nature Gram positive Gram-positive rods Gram-positive rods Gram-positive rods

2 Form Irregular Irregular Irregular Irregular

3 Surface Rough Rough Rough Rough

4 Catalase  +  +  +  + 
5 Oxidase  +  +  +  + 
6 Motility  +  +  +  + 
7 Citrate utilization  +  +  −  − 
8 Lactose  −  −  −  − 
9 H2S production  +  +  −  − 
10 Methyl red  + -  +  + 
11 Voges proskauer  +  + -  + 
12 Indole production  −  −  −  − 
13 Urease  −  −  −  − 
14 Mannitol  +  +  +  + 

Fig. 2 Neighbor-joining consensus tree based on partial 16S rDNA gene sequences showing the evolutionary relationships between Bacillus subtilis 
AG-PQ of the present study (Specified in red) with reference strains from GenBank. The significance of each branch is indicated by the bootstrap 
value calculated for 1000 replicates (only values higher than 50% are indicated)
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The production medium for cellulase allowed incubat-
ing for 72 h to optimize incubation time. The maximum 
cellulase production was achieved after 56 h of incuba-
tion time (Fig.  3B). Therefore, 56  h is designated as the 
optimal time for cellulase production for subsequent 
experimentation. The results are presented in Fig. 3. It is 
evident from the results that the optimal inoculum size 
for cellulase production was 5% at which the maximum 
315.0 U/ml/min enzyme activity was observed. The cellu-
lase activity declined to (312.0 U/ml/min) at 7.5% inocu-
lum concentration.

Four different media were used for the optimization 
of the fermentation process to achieve better enzyme 
activity. The basal media was found optimal for efficient 
cellulase activity (302.5 U/ml/min) at 37  °C and 56 h of 
incubation time (Fig. 3).

Five different carbon sources, i.e., rice husk, cellulose, 
wheat bran, corn cob, and coconut cake, were investi-
gated to opt for the optimal carbon source for cellulase 
production. The results of this study designated coco-
nut cake as the best carbon source for optimal cellulase 
production with values of 321.0  U/ml/min in contrast 
to cellulose (318.0 U/ml/min) and wheat bran (316.0 U/
ml/min) (Fig.  4a). Ammonium sulfate, ammonium 

chloride, urea, ammonium nitrate, and diammonium 
phosphate were supplemented as nitrogen sources in 
the production media to achieve the maximum cel-
lulase yield. The results of this study validate ammo-
nium nitrate as the best nitrogen source for cellulase 
production with the highest values of 329.0 U/ml/min 
followed by DAP (325.0  U/ml/min) and ammonium 
sulfate (326.0 U/ml/min) (Fig. 4b).

The pH of the production medium was adjusted 
to various pH ranges from 5 to 9 to analyze the influ-
ence of pH on cellulase production by Bacillus subtilis 
AG-PQ MG662180. Cellulase production was observed 
maximum (330.0 U/ml/min) at pH 8. The effect of tem-
perature on the production of cellulase was observed by 
incubating the production media at different tempera-
tures ranging from 20 to 60 °C. The maximum cellulase 
production (336.0 U/ml/min) was recorded at 37 °C.

The various parts per million (ppm) of silver oxide 
and iron oxide nanoparticles were supplemented into 
an optimized fermentation medium to examine the 
effect on cellulase production. The maximum cellulase 
production was noticed at a 50-ppm concentration of 
AgO NPs (336.0 U/ml/min). It has been also observed 
that Fe NPs particles pose adverse effects in cellulase 

Fig. 3 Optimization of cultural parameters on production of cellulase by Bacillus subtilis AG-PQ. a Buffer optimization. b Effect of incubation time 
on cellulase enzyme production. c Production media’s optimization. d Effect of inoculum size on cellulase enzyme production
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production with the lowest units recorded at 100 ppm 
(320.0 U/ml/min).

Partial purification and characterization of cellulase 
enzyme
Cellulase was partially purified from the crude extract by 
ammonium sulfate precipitation (ASP) at 50%. The maxi-
mum cellulase activity was observed at 50% ammonium 
sulfate concentration (360  U/ml/min). Kinetic param-
eters of partially purified cellulase were determined by 
incubating the enzyme at various cellulose concentra-
tions (0.1–0.9  mM) to analyze the effect of substrate 
concentration on enzyme activity under standard assay 
conditions. Cellulase showed maximum enzyme activity 
at 0.9  mM substrate concentration (286.4  U/ml/min) in 
the reaction mixture (Fig. 5).

The dependency on the pH of cellulase activity was 
investigated by varying pH values ranging from pH 4–9. 
Cellulase exhibits optimal activity (323.0  U/ml/min) at 
pH 8. Various temperature ranges from 25 to 65 °C, were 
evaluated under standard conditions to observe thermal 
stability and optimal cellulase activity (Fig.  6a, b). The 
cellulase activity was found maximum at 50 °C.

Effect of AgO and FeO NPs on purified cellulase
The partially purified cellulase was investigated against 
several concentrations of AgO and FeO nanoparti-
cles (10–70 ppm) to observe their positive or inhibitory 
effect. Results showed that AgO nanoparticles have posi-
tively influenced cellulase activity and improved ther-
mal stability over a period of time (Table 2). The enzyme 
activity (57.804  U/ml/min) progressively enhanced up 
to 25  ppm concentration whereas the enzyme activity 
started decreasing significantly with an increase in AgO 
NPs onwards.

FeO nanoparticles posed a negative inhibitory effect on 
cellulase activity. The enzyme activity at 10 ppm concen-
tration was 47.469 U/ml/min and decreased intensely to 
32.736 U/ml/min at 70 ppm.

Docking interaction of Ag and Fe nanoparticlas 
with cellulase
Molecular docking analysis revealed that a list of ligands 
with their binding energy or binding affinity to under-
stand the possible interaction of different structures with 
target molecules molecular docking method is very effec-
tive. It gives useful information about protein–ligand 

Fig. 4 Optimization of different sources for the production of cellulase enzyme. a Carbon source. b Nitrogen source. c pH. d Temperature
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interaction. In this study, molecular docking was car-
ried out using Auto Dock Vina to find binding sites of 
AgO and FeO. The results revealed that AgO nano-
particles had − 0.49  kcal/mol binding energy and FeO 
had − 0.27  kcal/mol binding energy (Fig.  7). Ag nano-
particles had more affinity for surviving compared to Fe 
nanoparticles because the lower the binding energy more 
stable the complex.

Discussion
The crystal structure of the synthesized nanoparticles 
(NPs) of silver and iron oxide were analyzed through the 
XRD method using the Debye Scherrer formula 
=

k�

βhklcosθ
 that was exposing Cu-Kα (1.5406 ◦

A ) in the radi-
ation of incident X-rays wave length (�) . The diffracted 
intensities of both NPs were measured with respect to 2θ, 
which range was taken from 20° to 80° as shown in Fig. 8, 
where θ is the Braggs angle, k indicates the shape factor 
or correction factor (k = 0.9) and βhkl represent FWHM 
(full width at half maximum) that was taken in radians 
[47]. The XRD pattern of Ag NPs was observed at 

2θ = 33.07°, 38.07°, 44.44°, 64.75° and 77.47° which corre-
spond to the Miller indices (111), (111), (200), (220), and 
(311) planes respectively. Such results were confirmed 
and compared with standard data (JCPDS: 89–3722 and 
04–0783) that reflect a face-centered-cubic (FCC) crystal 
structure corresponding to crystalline in nature [XRD-
Ag-1, XRD-Ag-2]. The phase identification of iron oxide 
 (Fe2O3) NPs displaying their peaks at 2θ = 31.12°, 36.14°, 
43.19°, 53.09°, 57.02°, 63.22°, and 73.04° are assigned to 
the planes (220), (311), (400), (422), (511), (440), and 
(533). The patterns of these NPs were compared with 
standard data (JCPDS: 82–1533 and 39–1346) [XRD-
FeO-1, XRD-FeO-2]. The EDX clearly shows the presence 
of oxygen with iron confirming the purity crystal of iron 
oxide NPs (Fig.  1D). Also in both silver and iron oxide 
NPs, some brooding diffraction peaks were observed that 
also confirming their small size and crystalline nature 
with no other phase of impurity in both patterns of XRD.

Bacillus subtilis AG-PQ of this study appeared in a 
clade comprising other bacterial strains of the Bacillus 
genus and was found in the same lineage with previously 

Fig. 5 Lineweaver–Burk plot of enzyme activity showing a linear order increase in enzyme activity
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reported Bacillus subtilis strains as shown in Fig. 2. Mor-
phological and biochemical characterization provides 
authentic information about the isolated unidentified 
strain and its extra/intracellular secretions but molecular 
characterization is a reliable approach to identifying the 
isolated strain through phylogenetic analysis by using 16S 
rRNA sequences [48]. The incubation time was observed 
and cellulase production was decreased by further 
increasing the incubation period. This might be due to 
the exhaustion of nutritional components or the produc-
tion of secondary metabolites in the production medium 

[39]. Reddy et al. [49] reported that the optimal incuba-
tion time for cellulase production by Bacillus subtilis was 
60 h. Whereas, Kiran et al. [39] showed that the optimal 
incubation time for the production of cellulase by Bacil-
lus subtilis was 48 h. The results of Yan et al. [9] revealed 
that the cellulase production by the Bacillus subtilis Q-3 
strain increased with an increase in incubation time and 
reached its maximum production at 60 h.

Inoculum size plays a crucial role in the optimization 
of the fermentation process [50]. To optimize the inocu-
lum size concentration, production media was inoculated 
with different inoculum concentrations (2.5%, 5%, 7.5%, 
and 9.0%) to observe their effect on cellulase production. 
Similar results were reported by Shajahan et al. [51] who 
optimized the 5% inoculum concentration for the high-
est cellulase production by Bacillus subtilis. Whereas, 
Singh and Kaur [52] reported that 5% inoculum size was 
best for maximum cellulase production by Bacillus sub-
tilis Q-3 strain. Similar observations were made by Hus-
sain et al. [32] for media optimization who reported the 
maximum production of cellulase using basal media pro-
duction medium by B. subtilis.

Enzyme regulation is majorly influenced by the cul-
ture media composition during the fermentation pro-
cess [39]. Previous literature reported that carbon 
and nitrogen sources affect cellulase production from 
microbial sources [6]. Also, Sethi et  al. [40] found 

Fig. 6 a Effect of various pH on cellulase enzyme activity. b Effect of various temperatures on cellulase enzyme activity

Table 2 Effect of silver oxide (AgO) and iron oxide (FeO) NPs on 
purified cellulase enzyme activity

Nanoparticles
Parts per million (ppm)

AgO NPs + Enzyme
U/ml/min

FeO 
NPs + Enzyme
U/ml/min

0 48.145 48.145

10 49.242 47.469

20 51.06 45.991

30 53.43 43.051

40 55.932 42.425

50 57.804 39.353

60 54.304 35.383

70 50.970 32.736
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coconut cake to be the best inducer for the production 
of cellulase enzymes by B. subtilis. Soeka [53] reported 
the maximum production of cellulase from B. subti-
lis A8 by utilizing rice bran and corncob as substrate. 
Vyas et al. [41] also reported ammonium nitrate as the 
best source of nitrogen for cellulase production by B. 
subtilis. Sethi et al. [40] tested various nitrogen sources, 
among which ammonium sulfate was found to be the 
best source of nitrogen for cellulase production by B. 

subtilis. Zhou et  al. [54] reported optimized cellulase 
production from Bacillus subtilis MU S1 by keeping the 
pH of the medium constant at pH 8. Similarly, Zamani 
et  al. [55] observed maximum cellulase activity by B. 
subtilis at pH 7. Hussain et  al. [32] showed maximum 
cellulase activity by Bacillus sp. 313SI under stationary 
conditions at 37  °C. In another study, 37  °C tempera-
ture was found to be optimal for cellulase production by 
Bacillus subtilis Q-3 Yan et al. [9]. Otajevwo and Aluyi 

Fig. 7 3D structure of B. subtilis AG-PQ protein in ribbon presentation. Silver and iron molecules/ligands (shown in green color)

Fig. 8 X-ray diffraction pattern of synthesized silver oxide (AgO) NPs and iron oxide (FeO) NPs
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[56] demonstrated a significant ability of B. subtilis 
SBMP4 strain to produce cellulase at 37 °C.

Lineweaver–Burk plot was plotted against the obtained 
data in order to retrieve Km and Vmax values [57]. Anu 
et  al. [54] optimized pH 8 for the maximum activity of 
partially purified cellulase. Similar observations were 
made by Kiran et  al. [39] who reported the maximum 
cellulase activity at 50 °C from Bacillus subtilis. Cellulase 
exhibits stability over a range of temperatures with mod-
erately stable at alkaline pH ranges.

Kumar et al. [36] investigated the effect of FeO NPs on 
the soil microbial community and reported iron oxide 
nanoparticles as enzyme inhibitors. The results are in 
concurrence with the observations of Salunke et al. [26] 
who investigated the effect of biosynthesized Ag nano-
particles on fungal cellulase activity to enhance cellu-
lase degradation. Here, a two-fold increase was observed 
in enzymatic activity with Ag nanoparticles in cellulose 
degradation. The results of this study confirm that the 
combination of free thermostable cellulose and AgO NPs 
is effectively used for significant cellulose degradation.

Another study by Shah et al. [58] and Eisazadeh et al. 
[59] examined the effect of Ag NPs on hydrolytic enzymes 
such as lipase and cellulase to be potentially used in the 
detergent industry. They revealed that Ag NPs affect the 
secondary structure of lipase and cause the reduction in 
its catalytic activity whereas loss of anti-microbial activ-
ity and stability of Ag NPs was reported upon interac-
tion with the lipase. Cellulase has been influenced by 
Ag-NPs in comparison to lipase and its catalytic activity 
was significantly changed suggesting the positive cor-
relation of Ag-NPs with cellulase. Recently, Gupta et  al. 
[60] reported that biosynthesized Ag NPs have a positive 
influence on fungal cellulase catalytic activity, stability, 
and biocompatibility. In our study, cellulase activity was 
significantly enhanced in the presence of Ag NPs (10–
50 ppm), and the cellulase activity was boosted two-fold 
at 0.012 µg/ml/min of Ag NPs concentration. Srivastava 
et al. [19] evaluated the pH and thermal stability of cellu-
lase in the presence of chemically synthesized Zinc oxide 
(ZnO) nanoparticles. Cellulase showed alkaline stability 
at pH 10.5 and retained 53% activity whereas the enzyme 
remained thermally stable at 65  °C for 10 h. The results 
of this study signify the importance of nanocatalysts for 
enhanced enzymatic activity to be potentially used in cel-
lulase degradation industries.

Conclusions
Agricultural soil is an abundant source of useful bio-
catalysts and other valuable substances. Bacillus subti-
lis AG-PQ can efficiently produce cellulase of sufficient 
quantity by consuming coconut cake as a sole carbon 
source and ammonium nitrate as a nitrogen source with 

solid-state fermentation (SSF). Other cultural param-
eters such as pH and temperature were also optimized 
to obtain the maximum cellulolytic activity. This study 
has successfully utilized silver oxide nanoparticles for 
enhancing the production and activity of cellulase from 
Bacillus subtilis AG-PQ. Improved cellulase produc-
tion and biodegradation activity were demonstrated by 
cellulase in the presence of silver oxide nanoparticles. 
The study indicates that Bacillus subtilis AG-PQ could 
be a better candidate for industrial processes owing 
to its thermophilic nature and thermostable cellulase 
production.
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