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Abstract 

Background Staphylococcus aureus is a gram-positive spherical bacteria and the most common cause of nosoco-
mial infections in the world. Given its clinical significance, the genome sequence of S. aureus has been elucidated 
to enhance our comprehension of its lifestyle and pathogenicity. The research aimed to summarize a potential 
hypothetical protein that may play an important role in S. aureus virulence and pathogenicity, covering its anticipated 
structure, probable biological functions, and importance in this context.

Results A hypothetical protein, YP_498675.1 with 281 amino acid residues of S. aureus, was chosen for analysis 
and modeling by several bioinformatics tools and databases in this work. According to primary and secondary 
structure analyses, YP_498675.1 is a stable hydrophilic protein with a significant proportion of α–helices. Subcellular 
localization predictions by CELLO, PSORTb, and SOSUI server indicate that it is a cytoplasmic protein. NCBI-CDD, Pfam, 
and InterProScan functional genomics research revealed that the hypothetical protein may include the pyridoxal 
phosphate (PLP)-dependent 2, 3-diaminopropionate biosynthesis protein SbnA domain. In the homology modeling 
method, the HHpred server was employed to create its 3D structure using the template structure of a Staphylofer-
rin B precursor biosynthetic enzyme SbnA bound to PLP (PDB ID: 5D84_A), an X-ray diffraction model having 100% 
sequence identity with the hypothetical protein. After energy minimization, several quality assessments and valida-
tion factors determined that the generated protein model was reliable and of reasonable quality.

Conclusion The present study has characterized and functionally annotated the hypothetical protein YP_498675.1 
of S. aureus. Further experimental validation would aid in determining the actual function of YP_498675.1 as well 
as confirm the protein’s value as a therapeutic target.
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Background 
Scientists may gather massive volumes of data in a 
relatively short period of time using next-generation 
sequencing (NGS). As more organisms are being 
sequenced, the challenge of assigning functions to genes 
is increasing [1, 2]. In many organisms, the molecular 
functions of more than 30% of proteins are unknown 
termed “Hypothetical Proteins (HP)” [3]. In silico 
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characterization of HP aids in the determination of 
three-dimensional (3D) structures, which can reveal new 
domains and motifs, pathways, protein networks, and 
other information [4–6]. Furthermore, novel HP may 
also serve as potential biomarkers and pharmacological 
targets for drug design, discovery, and screening [7, 8]. 
The functions of hypothetical proteins from various 
pathogenic bacteria have been successfully annotated 
using a variety of bioinformatics strategies [9–15]. 
Sequence similarity, phylogenetic analysis, protein–
protein interactions, protein–ligand interactions, active 
site residue similarity, conserved domains, motifs, 
phosphorylation sites, and gene expression patterns were 
all used to achieve this [16]. Although S. aureus have 
been there since the beginning of time, they were first 
discovered as a disease causing agent in the nineteenth 
century. In 1880, Alexander Ogston first observed grape-
like clusters of bacteria in pus from a surgical abscess in a 
knee joint and named them Staphylococcus [17]. In 1884, 
German doctor Friedrich Julius Rosenbach was able to 
cultivate the organisms in pure culture and classify them 
according to how their color creation [17]. Staphylococcus 
aureus is a gram-positive, spherical bacterium with a 
diameter of around 1  μm, which are responsible for a 
wide range of clinical illnesses [18]. It is often found as 
a commensal associated with skin, skin glands, and 
mucous membranes, particularly in the nose of healthy 
individuals [19]. It has been estimated that approximately 
20–30% of the general population are S. aureus carriers 
[20]. The most common way of transmission is through 
contaminated hands.S. aureus is one of the main causes of 
hospital and community-acquired infections, which can 
result in serious consequences [21]. Circulation system, 
skin, delicate tissues, and lower respiratory tracts are 
all affected by nosocomial S. aureus diseases. S. aureus 
can also lead to bone, joint, and endovascular diseases 
[22]. Infections with S. aureus can result in ventilator 
assisted pneumonia as well as central venous catheter-
associated bacteremia. Moreover, it causes serious deep-
seated infections, such as endocarditis and osteomyelitis 
[23]. Along with the infections mentioned above, S. 
aureus frequently causes toxin-mediated diseases such 
as toxic shock syndrome, scalded skin syndrome, and 
staphylococcal foodborne illnesses (SFD) [18]. Dairy 
cow’s milk in Bangladesh has been identified to contain 
Methicillin-resistant S. aureus (MRSA) that may lead 
to septicemia, pneumonia, and dermatitis [24]. The 
emergence of antibiotic resistance in S. aureus demands 
new strategies for treating infections caused by this 
pathogen. One potential avenue is the development of a 
vaccine or drug targeting a HP unique to S. aureus, which 
could help to overcome the limitation posed by antibiotic 
resistance. By thoroughly characterizing the properties 

and function of a HP, researchers can gain crucial 
knowledge about its potential as a vaccine candidate and 
explore its effectiveness in eliciting an immune response 
capable of combating S. aureus infection.

The genome of S. aureus measures about 2.82 Mp in 
size, with a mean GC content of 32.90%. It has so far 
been discovered with 2872 genes, and 2767 proteins. 
To date, a total number of 1511 proteins of S. aureus 
have been identified with no known function. About 
half of the genomic proteins in reference strain S. 
aureus NCTC 8325 are hypothetical [25]. There is a 
high demand to characterize the hypothetical proteins 
because annotating these proteins may result in new 
treatment targets [25]. The hypothetical protein 
(YP_498675.1) from S. aureus was used in this work 
since its structural characteristics are unknown, but 
its core amino acid sequence is known. The goal of 
this study was to investigate the physiochemical and 
secondary structural characteristics of the putative S. 
aureus protein (YP_498675.1), construct its first three-
dimensional (3D) model through homology modeling, 
and conduct functional and comparative genomics 
research using Basic Local Alignment Search Tool for 
proteins (BLASTp) and multiple sequence alignment 
(MSA) analysis. The current study aims to enhance 
our understanding of the functional roles performed 
by members of the staphylococci community, thereby 
offering valuable insights into potential therapeutic 
targets.

Materials and methods
Procedures for the filtration and selection of a specific 
hypothetical protein
The proteomic data of S. aureus was sourced from National 
Center for Biotechnology Information (NCBI) (http:// 
www. ncbi. nlm. nih. gov/) database. Initially, approximately 
1500 HP from S. aureus were chosen for subsequent in 
silico analysis. Exclusion criteria were applied to eliminate 
HP with amino acid sequences shorter than 50 residues, 
as proteins below this length are known to exhibit com-
promised folding characteristics. Out of the initial pool 
of 746 HP with amino acid sequences longer than 50 resi-
dues, their protein physicochemical properties were ana-
lyzed using ProtParam tool. Approximately 405 HP were 
excluded from further analysis due to exhibiting unsta-
ble characteristics according to ProtParam results. The 
remaining stable HP (341) underwent subcellular locali-
zation analysis using CELLO v2.5, PSoRTb, SOSUI, and 
PSLpred. HP that consistently displayed the same result 
across all the four tools were then selected for protein 
domain and motif prediction. After undergoing subcel-
lular localization analysis and subsequent protein domain 
and motif screening steps, a total of 94 HP were rejected 
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from further analysis. In the subsequent step, we employed 
homology modeling to predict the three-dimensional (3D) 
structure of HP. HP displaying less than 80% sequence 
similarity to any published protein structure are rejected 
for downstream analysis. At this stage of screening, we 
were able to delimit the HP number to 39. These predicted 
models were then subjected to protein quality assessment 
to evaluate their reliability and accuracy. As a result of 
this screening process, the number of HP was successfully 
reduced to below ten, as several models did not meet the 
quality assessment criteria and were therefore excluded 

from further consideration. From this narrowed-down 
selection, we carefully considered the clinical significance 
and function of all predicted HP, and the best-performing 
HP, YP_498675.1, consisting of 281 amino acids, was cho-
sen as the representative for our manuscript. The overall 
workflow of this screening process is depicted in Fig. 1.

Physicochemical properties analysis
The ExPASy ProtParam [26] (https:// web. expasy. org/ 
protp aram/) tool was used to characterize HP in terms 
of their physicochemical features. Parameters such 

Fig. 1 Workflow of the filtration and selection process of the hypothetical protein (YP_498675.1). Number of HP at each step of the filtration 
process are indicated on the left side

https://web.expasy.org/protparam/
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as molecular weight, aliphatic index (AI), extinction 
coefficients, amino acid composition, grand average 
of hydropathy (GRAVY), isoelectric point (pI), and 
estimated half-life were analyzed.

Prediction of protein subcellular localization
The putative subcellular localization of the HP 
(YP_498675.1) was determined by CELLO v.2.5 (http:// 
cello. life. nctu. edu. tw/) [27], an analysis based on a 
two-level support vector prediction system (SVM). 
Subcellular localization predicted by CELLO was further 
correlated with the result of PSoRTb (https:// www. psort. 
org/ psortb/) [28], SOSUI (https:// harri er. nagah ama-i- 
bio. ac. jp/ sosui/ mobile/) [29], and PSLpred (https:// webs. 
iiitd. edu. in/ ragha va/ pslpr ed/ submit. html) [30]. SOSUI 
discriminates between soluble and transmembrane 
proteins by calculating the average hydrophobicity of 
protein. In contrast, PSORTb and PSLpred predict 
subcellular localization of prokaryotic proteins on the 
basis of various features, e.g., amino acid and dipeptide 
composition, composition of physicochemical properties, 
and evolutionary information of PSI-BLAST.

Identification of protein domain and motif
NCBI Conserved Domain Search (NCBI CD-Search) 
(https:// struc ture. ncbi. nlm. nih. gov/ Struc ture/ cdd/ wrpsb. 
cgi) [31], Protein families database (Pfam 34.0) (http:// 
pfam. xfam. org/) [32], and InterProScan5 (http:// www. 
ebi. ac. uk/ Tools/ servi ces/ web/ toolf orm. ebi? tool= iprsc 
an5& seque nce= unipr ot: KPYM_ HUMAN) [33] were 
used for domain analysis of YP_498675.1. We utilized 
the Conserved Domain Database (CDD) through 
Reverse Position-Specific BLAST (RPS-BLAST) and the 
InterProscan tool for our analyses. Pfam, a protein family 
database, employed hidden Markov models (HMMs) to 
generate annotations and multiple sequence alignments. 
To identify the protein sequence motif, we employed 
the MOTIF search tool (https:// www. genome. jp/ tools/ 
motif/) InterProscan tool. Pfam is a protein family 
database that uses hidden Markov models (HMMs) in 
order to generate annotations and multiple sequence 
alignments. To determine the protein sequence motif, 
MOTIF Search (https:// www. genome. jp/ tools/ motif/) 
tool was used [34].

Protein family and phylogenetic tree analysis
In order to identify the homologs of the HP 
(YP_498675.1), a protein-BLAST (BLASTp) (https:// 
blast. ncbi. nlm. nih. gov/ Blast. cgi? PAGE= Prote ins) 
[35] from NCBI (National Center for Biotechnology 
Information) against the non-redundant database with 
default parameters was performed. This approach is 
based on the local alignment of protein sequence to 

find similar proteins. CLC Sequence Viewer version 8 
(https:// clc- seque nce- viewer. softw are. infor mer. com/8. 0/) 
was employed to perform multiple sequence alignment 
and generate a phylogenetic tree for a specific subset of 
sequences.

Secondary structure prediction
Two-dimensional structure of the YP_498675.1 
protein was determined using SOPMA (self-optimized 
prediction method with alignment) (https:// npsa- prabi. 
ibcp. fr/ cgi- bin/ npsa_ autom at. pl? page=/ NPSA/ npsa_ 
sopma. html) [36] and PSI-PRED (Position Specific 
Iterated – BLAST) (http:// bioinf. cs. ucl. ac. uk/ psipr ed/) 
[37]. Result from SOPMA analysis was correlated with 
the result of PSI-PRED.

Homology modeling
HHpred server (https:// toolk it. tuebi ngen. mpg. de/ tools/ 
hhpred) [38] was used to determine the 3D structure of 
YP_498675.1 and the performance of this determination 
was based on the pairwise comparison profile of hidden 
Markov models (HMMs). HHpred server allows to search 
a wide choice of databases, such as the PDB, SCOP, Pfam, 
SMART, COGs, and CDD. The quality of each detected 
template has been projected based on aspects of the 
target-template alignment. The template protein of a 
Staphyloferrin B precursor biosynthetic enzyme SbnA 
bound to PLP (PDB ID: 5D84_A) with 100% sequence 
identity to our hypothetical protein was chosen for 
homology modeling. UCSF Chimera 1.16 was employed 
to visualize the 3D model structure [39].

Quality assessment
Structural evaluations of the protein model were 
performed by using several programs called PROCHECK 
(https:// www. ebi. ac. uk/ thorn ton- srv/ softw are/ PROCH 
ECK/) [40], Verify 3D (https:// servi cesn. mbi. ucla. edu/ 
Verif y3D/) [41], ERRAT [42], and Qualitative Model 
Energy Analysis (QMEAN) (https:// swiss model. expasy. 
org/ qmean/) [43] programs of ExPASy server of SWISS-
MODEL Workspace. PROCHECK performs various 
assessments including the generation of a Ramachandran 
plot and measurement of torsion angles, surface areas, 
bond angle, and atomic distances [40]. The accuracy 
of the overall fold/structure, as well as inaccuracies in 
localized regions and stereo chemical characteristics 
such as bond lengths and angles, were all checked model 
evaluation. Verify 3D determines the compatibility of an 
atomic model (3D) with its own amino acid sequence 
(1D) by assigning a structural class based on its location 
and environment (alpha, beta, loop, polar, nonpolar, 
etc.) and comparing the results to good structures [44]. 
A score above 80% on Verify 3D indicates good quality 
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for protein structures. QMEAN, short for Qualitative 
Model Energy Analysis, is a composite scoring function 
describing the major geometrical aspects of protein 
structures [45]. ERRAT stands for “Evaluation of Protein 
Structure by Ramachandran Plot Assessment.” The 
ERRAT score is a metric for assessing the accuracy and 
quality of protein models. By evaluating the statistical 
significance of the difference between predicted and 
expected atomic interactions, the ERRAT score evaluates 
the model’s compatibility with known protein structures 
[42]. These analyses provide valuable insights into the 
quality and accuracy of the protein models, ensuring 
their reliability for further analysis and interpretation.

Energy minimization of the model structure
The 3D structure of the hypothetical protein 
YP_498675.1 was refined by performing YASARA 
energy minimization server [46]. In order to perform the 
protein energy minimization of the PDB file of the three-
dimensional protein, model structure was uploaded. 
The server minimizes the energy required by providing 
a more precise and stable  3D structure of the desired 
protein (YP_498675.1).

Active site analysis
Computed atlas of surface topography of proteins 
(CASTp) (http:// sts. bioe. uic. edu/ castp/) server was used 
to find out the ligand binding sites of the hypothetical 
protein YP_498675.1. CASTp obtains the topographical 
features of a protein in a detailed, comprehensive, and 
quantitative manner. CASTp predicts active pockets 
located on protein surfaces and in the interior site of 
the 3D structure, the regions and key residues of protein 
which interact with ligands. As a result, it has become 
an essential tool for predicting regions and key residues 
of protein which interact with ligands [47]. The CASTp 
result was also displayed using PyMOL software [48].

Results
Analysis of physicochemical properties and sub‑cellular 
localization
The theoretical physiochemical features of the hypotheti-
cal protein YP_498675.1 were analyzed using ExPASy’s 
ProtParam server (Table 1). The protein was predicted to 
be consisting of 281 amino acids, with a molecular weight 
of 30,872.44 Daltons and an isoelectric point (PI) of 5.78. 
It is well established that proteins with an instability 
index below 40 are considered stable, whereas those with 
a value exceeding 40 are deemed unstable [49]. In the 
case of the analyzed hypothetical protein YP_498675.1, 
its instability index was calculated to be 29.48, indicating 
that it falls within the stable range. The negative grand 

average of hydropathicity (GRAVY) index of − 0.119 is 
indicative of a hydrophilic and soluble protein. The most 
abundant amino acid residue was found to be isoleucine 
(35), followed by glycine (24) and alanine (21). The lowest 
was found as cysteine (2). The sequence had 35 negatively 
charged residues (aspartic acid + glutamic acid) and 29 
positively charged residues (arginine + lysine). The atomic 
composition comprises of 4381 atoms having molecular 
formula of protein  C1375H2211N369O417S9.

The function of a protein is greatly influenced by 
its location within the cell. Predicting the subcellular 
localization of unknown proteins would be beneficial 
because different cellular locations represent different 
functions. This information could aid in the study of 
disease mechanisms and the development of new drugs 
[27, 28]. Our query protein’s (YP_498675.1) subcellular 
localization was predicted to be a cytoplasmic. 
Subcellular location of YP_498675.1 was analyzed 
by CELLO and authenticated by PSORTb v3.2.0, 
SOSUIGramN, and PSLpred server.

Secondary structure prediction of YP_498675.1
PSI-PRED and SOPMA servers were used to investigate 
the secondary structure of the YP_498675.1. The SOPMA 
secondary prediction server analysis revealed the propor-
tions of alpha helix, beta turn, extended strand, and the 
random coil of the protein as 40.57%, 13.17%, 18.15%, and 
28.11%, respectively. Similar results were also observed in 
PSI-PRED tool (Fig. 2).

Prediction of protein family by domain and motif analysis
NCBI-CD Search, Pfam, and InterProScan annotation 
tools were used to identify conserved domains and 
potential function of the YP_498675.1. The specific 
hit explored by conserved domain (CD) search tool 
predicted the query protein belongs to tryptophan 

Table 1 Analysis of physiochemical properties of the 
YP_498675.1 using ProtParam

Descriptions Value

Number of amino acids 281

Molecular weight 30,872.44 KDa

Theoretical pI 5.78

Total number of negatively charged residues 35

Total number of positively charged residues 29

Ext. coefficient 33,015  M−1  cm−1

Instability index 29.48

Aliphatic index 102.38

Grand average of hydropathicity (GRAVY)  − 0.119

http://sts.bioe.uic.edu/castp/
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synthase beta superfamily (fold type II) (Try-synth-beta_ 
II). Protein of this family is pyridoxal phosphate (PLP)-
dependent enzyme covers 1 to 269 amino acid residues 
with an E-value of 4.38e-168 of our protein sequence. The 
result of CD search analysis was found to be comparable 
with the result of two other domain searching tools 
namely InterProscan and Pfam. InterProscan covers 1 
to 254 amino acid residues with an E-value of 1.4e-46. 
The Pfam tool predicted the tryptophan synthase beta 
superfamily covers 1 to 254 amino acid residues with an 
E-value of 1.5e-46. MOTIF server predicted pyridoxal 
phosphate (PLP)-dependent enzyme at the position of 1 
to 254 amino acid residues with an E-value of 1.5e-46.

Comparative genomics analysis of YP_498675.1 using 
multiple sequence alignment and phylogeny
The BLASTp search against the non-redundant database 
showed homology (up to 100% sequence similarity) with 
other known type of tryptophan synthase beta super-
family protein from different Staphylococcus species 

(Table 2). A total of 10 selected protein sequences along 
with the target sequence were retrieved from BLASTp 
analysis for multiple sequence alignment (MSA). MSA 
was completed using the CLC sequence viewer in order 
to observe the conserved and dissimilar residues among 
the homologs (Fig. 3). Using the same data, a phylogenic 
tree was created (Fig.  4). The target protein along with 
the three other proteins from Staphylococcus species 
(WP_000570813.1 and WP_0000808.1) and Escherichia 
coli (HAI9356092.1) appear to have common ancestor 
with the WP_047424351.1 and WP_047530432.1 pro-
teins of S. schweitzeri. The scale bar estimates sequence 
divergence, and amount of genetic change is represented 
by the line segment with the number (0.015).

Three‑dimensional structure determination and model 
quality assessment
The query sequence was submitted into the HHpred 
server for protein homology detection and structure 
prediction [38]. The 3D structure of YP_498675.1 was 

Fig. 2 Protein secondary structure prediction of the (YP_498675.1) using the PSI-PRED server. This graphical representation has four different 
sections. The first section is made up of bars of varying heights. The height of the bar is proportional to the confidence score. The pink color 
represents the alpha helix, the yellow color represents beta sheets or strands, and the gray color represents coils in the second section. The 
coil connects a particular alpha helix with the particular beta sheets. The third section contains an alphabetic representation, which denotes 
the secondary structure of a protein; Here, E, H, and C are used for beta sheets, alpha helixes, and coils, respectively. The arrangement of amino acids 
is presented alphabetically in the final section
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determined using the template structure of the Staphy-
loferrin B precursor biosynthetic enzyme SbnA bound 
to PLP (PDB ID: 5D84_A) protein, which showed 100% 
identity with YP_498675.1 in the HHPred server. The 3D 
model was viewed by USCF Chimera 1.16 and shown in 
(Fig. 5).

PROCHECK, Verify 3D, QMEAN, and ERRAT were 
used to evaluate the quality of our modeled 3D struc-
ture. To validate protein models, the program PRO-
CHECK employs several evaluation metrics, including 
the generation of a Ramachandran plot and the analy-
sis of torsion angles, surface areas, bond angles, and 
atomic distances. These calculations play a crucial 
role in assessing the structural integrity and accuracy 
of protein models [40]. According to PROCHECK 
result, the most favored region in the “Ramachandran 
plot” had 96.7% of amino acid residues, with 2%, and 
0.8% residues in additional allowed and generously 
allowed regions, respectively, indicating that the model 
was reliable and of good quality (Table 3 and Fig. 6A). 
ERRAT was used to assess the model’s reliability by 
analyzing the statistics of non-bonded interactions 
between distinct atom types based on characteristic 
atomic interactions. The template’s overall quality fac-
tor was found to be 87.546, indicating a structure with 
good high resolution. According to the Verify 3D tool, 
100% of residues had an averaged 3D (atomic model)–
1D (amino acid) score ≥ 0.2, indicating that these 
structures were compatible and excellent. The model 
was placed into the dark gray zone by the QMEAN 

tool, with a QMEAN4 value of 0.14. This score is con-
sidered good since the threshold value for the QMEAN 
score, which ranges from 0 to 1, falls within the accept-
able range (Fig. 6B).

Active site determination
The identification and characterization of active site 
residues are key steps in the design of a drug or inhibi-
tor. The CASTp server was used to assess the active site 
of the model structure, as well as to determine the active 
site amino acid residues. The top active sites of the model 
protein were determined in one of the largest pockets 
using the area of 1198.087 and the volume of 1046.218 
amino acids. According to CASTp prediction, the model 
protein’s active residues are shown in (Table 4 and Fig. 7).

Energy minimization result
The energy of the predicted protein’s three-dimensional 
structure was minimized by YASARA force field 
minimizer. The energy was reduced to − 85,376.8 kj/mol 
from − 150,380.7 kj/mol after energy minimization. After 
energy minimization, the final score turned from − 1.46 
to − 0.21, suggesting a more stable structure.

Discussion
S. aureus is a gram-positive, facultative aerobe, tiny, 
spherical, or non-motile cocci that do not produce 
spores and are catalase and coagulase positive. S. aureus 
is a significant human and animal pathogen because it 
produces exotoxins called superantigens (SAgs). The 

Table 2 Identification of homologs of YP_498675.1 through protein BLASTp search analysis

Description Scientific name Total score Query cover E value Per. ident Accession

2,3-diaminopropionate biosynthesis protein SbnA 
(Staphylococcus)

Staphylococcus 575 100% 0 100 WP_000570808.1

2,3-diaminopropionate biosynthesis protein SbnA 
(Staphylococcus)

Staphylococcus 575 100% 0 100 WP_000570813.1

TPA: 2,3-diaminopropionate biosynthesis protein 
SbnA (Escherichia coli)

Escherichia coli 572 100% 0 99.64 HAI9356092.1

2,3-diaminopropionate biosynthesis protein SbnA 
(Staphylococcus argenteus)

Staphylococcus argenteus 557 100% 0 96.8 WP_244049671.1

2,3-diaminopropionate biosynthesis protein SbnA 
(Staphylococcus schweitzeri)

Staphylococcus schweitzeri 556 100% 0 96.8 WP_047424351.1

2,3-diaminopropionate biosynthesis protein SbnA 
(Staphylococcus argenteus)

Staphylococcus argenteus 556 100% 0 96.8 WP_031788299.1

2,3-diaminopropionate biosynthesis protein SbnA 
(Staphylococcus schweitzeri)

Staphylococcus schweitzeri 556 100% 0 96.44 WP_047530432.1

2,3-diaminopropionate biosynthesis protein SbnA 
(Staphylococcus roterodami)

Staphylococcus roterodami 553 100% 0 96.09 WP_240784826.1

2,3-diaminopropionate biosynthesis protein SbnA 
(Staphylococcus singaporensis)

Staphylococcus singaporensis 551 100% 0 95.73 WP_193574084.1

2,3-diaminopropionate biosynthesis protein SbnA 
(Staphylococcus roterodami)

Staphylococcus roterodami 551 100% 0 95.37 WP_201461238.1
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spectrum of SAg-mediated diseases included from rela-
tively benign food poisoning to life-threatening toxic 
shock syndrome (TSS). The major secreted SAgs of S. 
aureus include TSS toxin 1 (TSST-1) and enterotoxin 
(SE) serotypes A to Q, excluding F [50, 51]. This is one 
of the most widespread bacterial pathogens, responsi-
ble for hundreds of thousands to millions of more seri-
ous, invasive infections each year, and an uncountable 
number of simple skin infections [52, 53]. It is a lead-
ing causative agent in pneumonia and other respira-
tory tract infections, surgical site, prosthetic joint, and 
cardiovascular infections, as well as nosocomial bacte-
remia [54]. Over the last two decades, scientists have 
worked to develop a vaccine against S. aureus, but in 
clinical trials, no vaccine candidates have been found 
to be effective. Characterization of HPs YP_498675.1 of 
S. aureus can aid in understanding bacterial metabolic 
regulations, formulating disease control strategies, and 
developing effective therapeutics. Various computa-
tional resources were employed in this study to charac-
terize the hypothetical protein YP_498675.1 of S. aureus 
from structural and functional aspects. The physi-
ochemical properties’ analysis revealed that the protein 
consists of 281 amino acid sequence, have a molecular 
weight of 30,872.44, the grand average of hydropathicity 
(GRAVY) score of − 0.119, and a theoretical PI of 5.78 
(Table 1). The Protparam tool calculates the extinction 
coefficient of HP at 280  nm, ranging from 33,015 to 
32,890  M−1  cm−1. This coefficient is valuable for quanti-
tative analysis of protein interactions, including interac-
tions with ligands and other proteins [49]. In our study, 
we employed CELLO, a subcellular location prediction 
tool, to analyze the hypothetical protein YP_498675.1. 
The results from CELLO indicated that the protein 
predominantly localizes to the cytoplasm, which aligns 
perfectly with the findings of PSoRTb, SOSUI, and 
PSLpred. Furthermore, this observation was reinforced 
by the ProtParam GRAVY index (− 0.119), which sug-
gested that the protein possesses a hydrophilic nature. 
Given that hydrophilic proteins are commonly found 
in the cytoplasmic compartment within cellular envi-
ronments, the CELLO prediction further substantiates 
our findings. The analysis of the protein’s secondary 
structure reveals the prevalence of extended strand, 
beta turn, alpha helix, and random coil. The analyzed 
hypothetical protein (YP_498675.1) of this study is pre-
dicted to have the pyridoxal phosphate (PLP)-depend-
ent enzyme motif. PLP-dependent enzymes in S. aureus 
may play crucial role in the development of skin dis-
eases. PLP is the active form of vitamin B6 and serves as 
a cofactor for numerous enzymes involved in different 
metabolic pathways. One of the crucial involvement of 

Fig. 3 MSA analysis among the different types of 2, 
3-diaminopropionate biosynthesis protein SbnA 
with the YP_498675.1. Sources for the sequences: row 1 and 2 
Staphylococcus argenteus; row 3 and 4 S. schweitzeri; row 5 and 7 
S. roterodami; row 6 S. singaporensis; row 8 and 9 S. aureus; row 10 
Escherichia coli; last row target protein (YP_498675.1). MSA indicates 
multiple sequence alignment (generated by CLC Sequence Viewer 
Version 8)
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PLP-dependent enzymes in cell wall synthesis that can 
influence the integrity and structure of the bacterial cell 
envelop, which is vital for the S. aureus colonization and 
evasion of host immune responses. Furthermore, it has 
been found that some PLP-dependent enzymes can pro-
duce metabolites or by-products that directly influence 
host immune response and contribute to tissue dam-
age and progression of skin diseases [55, 56]. Further 
research is necessary to fully comprehend the specific 

role of the hypothetical protein YP_498675.1 and its 
association in the context of S. aureus skin infections.

The virulence and survival of pathogenic bacteria such 
as S. aureus is depended on PLP. The conserved pro-
tein domain of the hypothetical protein YP_498675.1 is 
found to be 2, 3-diaminopropionate biosynthesis pro-
tein SbnA, a protein of the staphyloferrin B biosynthe-
sis operon. It is known that SbnA is a PLP-dependent 
enzyme and actively involved in many cellular processes 
and biosynthesis of natural products. SbnA and SbnB 

Fig. 4 Phylogenetic tree illustrating evolutionary relationship of YP_498675.1 with closely related proteins. The tree was generated using CLC 
Sequence Viewer Version 8. Here, the scale bar estimates sequence divergence, and amount of genetic change is represented by the line segment 
with the number (0.015)

Fig. 5 Predicted three-dimensional structure of the YP_498675.1 (visualized by UCSF Chimera 1.16)
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are encoded by the staphyloferrin B biosynthetic gene 
cluster and are implicated in L-2, 3-diaminopropionic 
acid (L-Dap) biosynthesis. SbnA and SbnB together 
appear to synthesize 2, 3-diaminopropionate, a precur-
sor of certain siderophores and other secondary metab-
olites [57]. Further analysis by protein BLAST 2103 
(BLASTp) against the non-redundant database revealed 
that YP_498675.1 has up to 100% sequence similarity 
with other 2,3-diaminopropionate biosynthesis protein 
SbnA of S. aureus and other related organisms (Table 2). 
The results of protein domain and BLASTp analysis 
clearly indicate that hypothetical protein YP_498675.1 
may have an important functional role in cellular 
metabolism of S. aureus.

Understanding the three-dimensional structure of 
proteins is crucial for comprehending their interac-
tions, functions, and localization. The most widely 
employed method for predicting protein structures is 
homology modeling. In our current research, we uti-
lized homology modeling to propose the initial 3D 
structure of a hypothetical protein in S. aureus called 
YP_498675.1. This predicted structure will offer valu-
able insights into the protein’s structure and func-
tion, enabling further exploration of drug design and 
protein interactions [58]. The tertiary structure of 
the YP_498675.1 was developed from HHpred server 
and the quality of the model was assessed by evalua-
tion software like Verify 3D, PROCHECK, ERRAT, 
and QMEAN. It has been estimated that about 96.7% 
amino acid residues of the model 3D structure cov-
ered the most favored region in Ramachandran plot, 
which depicts the model quality as valid (Fig. 6A). The 
result of QMEAN4 server (Fig.  6B) showed that the 
Z score of the anticipated model was 0.14, which also 
denotes a good quality model. After YASARA energy 
minimization process, the 3D structure of hypothetical 

protein YP_498675.1 became more stable. Predic-
tion of active-sites residues by CASTP server is a very 
important step in the design of a drug or inhibitor. 
These active site residues can be identified and char-
acterized to learn more about the protein’s enzymatic 
activity, binding properties, and probable involvement 
in numerous biological processes. CASTp is a database 
server that is capable of identifying and characteriz-
ing distinct regions on proteins. It can determine the 
boundaries of these regions, calculate their sizes, and 
analyze their dimensions [49]. These regions encom-
pass pockets on the protein’s surface as well as internal 
voids within the protein structure. By utilizing CASTp, 
the primary active sites of the protein model were pre-
cisely identified, with sizes varying between 1198.087 
in terms of area and 1046.218 in terms of volume. 
In CASTp analysis, one largest pocket was found as 
active sites with solvent-accessible (SA) surface area of 
1198.087 and volume of 1046.218 amino acids. Over-
all, the CASTp analysis advances our understanding of 
the structure–function link of the protein and opens 
the door for further research into the precise molecu-
lar pathways involved. 

Conclusion
Our study delved into the in silico structural and 
functional annotation of a novel hypothetical pro-
tein YP_498675.1, derived from S. aureus. Through a 
meticulous computational analysis, we gained valuable 
insights into the characteristics and functionalities of 
this protein. Functional annotation unraveled potential 
functional domain (Try-synth-beta_ II) and motif (PLP-
dependent enzyme), providing clues about its putative 
biological roles. By thoroughly examining YP_498675.1, 
we have expanded our knowledge regarding its putative 

Table 3 Ramachandran plot statistics of the hypothetical protein (YP_498675.1)

Statistics Number of AA residues Percentage (%)

Residues in the most favored regions (A, B, L) 236 96.7%

Residues in the additional allowed regions (a, b, l, p) 5 2%

Residues in the generously allowed regions (~ a, ~ b, ~ l, ~ p) 2 0.8%

Residues in disallowed regions 1 0.4%

Number of non-glycine and non-proline residues 244 100%

Number of end-residues (excl. Gly and Pro) 2

Number of glycine residues (shown as triangles) 24

Number of proline residues 11

Total number of residues 281
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Fig. 6 Model quality assessment. A Ramachandran plot of the model structure validated by PROCHECK server. Here, 96.7% amino acid residues 
covered the most favored regions (A, B, L). B Graphical representation of QMEAN result of the model structure. Here, Z score of the anticipated 
model was 0.14 (indicates good agreement between the model structure and experimental structure of similar size)
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involvement in vital cellular processes and interactions. 
Our research advances knowledge of the genetic and 
proteomic profile of S. aureus, identifying putative tar-
gets for development of a drug or vaccine against this 
pathogenic bacterium. While this study represents a 
crucial initial steps towards the functional significance 
of YP_4986675.1, it is warranted to conduct further 

experimental validation and functional characterization 
to confirm the predicted structural and functional attrib-
utes. Nonetheless, our comprehensive in silico analysis 
lays a solid foundation for future research, offering valu-
able insights into the potential roles of YP_4986675.1 and 
its implications with the realm of S. aureus physiology 
and pathogenesis.

Table 4 CASTp analysis result: Active site of amino acid residues. Here, A.A, amino acid; SeqID, position of AA in protein sequence

A.A SeqID A.A SeqID A.A SeqID A.A SeqID A.A SeqID

MET 1 THR 59 TYR 107 PRO 176 PRO 253

LYS 2 ASN 60 ASN 112 ILE 177 ASP 254

PRO 5 ASP 78 HIS 116 ASN 178 ARG 255

GLU 27 HIS 80 PRO 138 ARG 179 GLY 256

SER 28 GLY 82 VAL 139 GLU 180 ASP 257

THR 29 TYR 83 SER 140 LEU 181 ARG 258

SER 30 LEU 84 THR 141 PRO 182 TYR 259

GLY 31 MET 85 THR 142 GLY 183 LEU 260

ASN 32 ARG 87 GLY 143 ILE 184 ASP 261

LEU 33 ILE 88 SER 144 GLY 185 LEU 262

ASP 53 VAL 91 ILE 145 ALA 186

LYS 55 GLN 92 LYS 167 SER 187

ILE 56 TRP 103 GLY 168 ARG 188

SER 57 ASN 105 SER 169 SER 227

PRO 58 GLN 106 VAL 170 ILE 251

Fig. 7 Determination of active site of YP_498675.1 using the CASTp server. The largest active site was found in the areas with 1198.087 and volume 
of 1046.218 amino acids
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