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Abstract 

Background Microorganisms have characteristics that aid plant growth and raise the level of vital metabolites 
in plants for better growth including primary and secondary metabolites as well as several developmental enzymes. 
Marine bacteria must endure harsh environmental circumstances for their survival so it produces several secondary 
metabolites to protect themselves. Such metabolites might likewise be advantageous for a plant’s growth. However, 
the effectiveness of marine microbes on plant growth remains unexplored. In the present study, we aim to evaluate 
such marine microbe both in vitro and in vivo as a plant growth promoter.

Result Marine Bacillus licheniformis was found positive for vital plant growth-promoting traits like gibberellin 
and ammonia production, phosphate and potassium solubilization in vitro. Due to the presence of such traits, it 
was able to increase germination in chickpea. As it can colonize with the roots, it will be able to help plants absorb 
more nutrients. Additionally, in vivo study shows that B. licheniformis treatment caused rise in vital factors involved 
in plant growth and development like chlorophyll, POX, phenol, proline, carotenoid, flavonoid, total proteins and SOD 
which resulted in increase of chickpea height by 26.23% and increase in biomass by 33.85% in pot trials.

Conclusion Marine B. licheniformis was able to promote plant growth and increased chickpea production 
in both number and weight for both in vitro and in vivo conditions.

Keywords PGPB, In vivo studies, Bacillus licheniformis

Background
The rise in the population across the world requires 
increase in food production. For this, chemical fertilizers 
are being used extensively in agriculture, which is essen-
tial for production because they supply vital plant nutri-
ents like nitrogen, phosphorous and potassium; these 
fertilizers have evolved into crucial parts of contempo-
rary agriculture [1]. Yet, excessive fertilizer use may have 
unintended negative effects on the ecosystem [2]. Thus, 
it is necessary to reduce the use of chemical fertilizers 

and boost plant growth in order to improve global agri-
cultural production in a way that is more economically 
and environmentally sustainable. In more sustainable and 
environmentally friendly agricultural systems, the use of 
plant growth-promoting bacteria (PGPB) is a potentially 
beneficial method for enhancing crop yield [3].

Microorganisms produce plant growth regula-
tors like auxin, cytokinin, and gibberellin, which are 
utilized by plants and stimulate plant growth [4]. 
In plants, auxins like indole-acetic acid (IAA) have 
been noted to trigger both immediate- and long-term 
responses. They are also called “root-forming hor-
mones of plants” as they increase root length and root 
hairs and boost development of lateral roots which 
enables the plant to absorb more nutrients, thus pro-
moting the plant’s total growth [5, 6]. Similarly, gib-
berellin is reported to promote shoot development 
including internode extension and apical dominance 
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[7]. These organisms also have the capacity to colonize 
plant roots, benefiting their hosts by regulating plant 
hormone synthesis, enhancing the availability of soil 
nutrients [8]. By the bio-fixation of atmospheric nitro-
gen and the solubilization of soil minerals, such as 
phosphorus and potassium, microorganisms operate 
as a growth promoter, boosting the availability of both 
macro as well as micronutrients [9].

Generally, soil microbes are studied as plant growth 
promoters, but marine microbes have received less 
attention in this aspect. Because of the extreme condi-
tions in the marine environment, which include high 
pressure, salt, low temperatures, and a lack of light, 
the marine bacteria have been able to acquire a vari-
ety of traits that are not evident in soil or air species 
[10]. The microbial flora that thrives in the marine 
ecosystem has adapted to survive in a more demand-
ing environment. Thus, such microbes may produce a 
wide range of metabolites for its own survival which 
can be beneficial for plant development in stress con-
dition [11].

Bacillus species are highly promising for agricultural 
usage due to their ability to produce endospores which 
are tolerant to variety of abiotic stress [12]. Moreover, it 
is well known that some Bacillus species can fix nitro-
gen, promote the nodulation of other bacteria, and so 
promote the colonization of rhizobacteria [13]. Here, 
we aim to study marine Bacillus as plant growth pro-
moter as marine microbes have different metabolism 
than its terrestrial counterpart due to the environmen-
tal condition in which it is adapted. Thus, because of 
this, the metabolites produced by marine microbes may 
be different to terrestrial counterparts [14] which may 
be more beneficial for plant growth and development.

For the current study, chickpea is used as it is one of 
the cheapest protein sources and one of the most con-
sumed foods in the world. It is an essential part of every 
vegetarian’s diet [10]. As a result, it is a crucial crop for 
both economic and nutritional reasons. The present 
study focusses on exploring marine microbe for chick-
pea growth promotion.

Methods
Isolation of marine microorganism and its identification
Marine water sample was collected from Gulf of 
Khambhat, Gujarat, India (22°30′N,72°61′E). Water 
sample was collected 10 feet away from seashore, and 
the depth was 6 feet. Sample was spread on marine agar 
plates without dilution. For identification, biochemical 
tests were conducted as per Bergey’s Manual of System-
atic Bacteriology, and 16s rDNA sequencing was car-
ried out at Eurofins, Bangalore, India.

Growth optimization
Optimal growth of organism was checked on marine 
broth (MB), nutrient broth (NB) and Luria-Bertani broth 
(LB), varying concentration of salt (0.5 to 8%), pH (5 to 
9), temperature (27 to 42 °C) and aeration (100 rpm, 150 
rpm and static condition). In all the flasks (having 100 
ml media), 100 µl of bacterial culture  (106 cells/ml) was 
inoculated, and every 24 h, 2-ml aliquot was taken from 
all culture flasks, and its absorbance was measured at 
600 nm using Shimadzu UV-Visible spectrophotometer 
UV-1800. Growth curve was plotted as optical density 
against time.

IAA production
Isolate was inoculated in NB with L-tryptophan (200 mg/
ml) and incubated for 3 days at 27 °C. Culture was centri-
fuged, and amount of IAA was measured from superna-
tant using Salkowski’s reagent. Culture supernatant and 
Salkowski’s reagent were mixed in equal proportions, and 
change of colour of supernatant to pink indicated IAA 
production. Absorbance was measured using Shimadzu 
UV-1800 UV-Visible spectrophotometer at 590 nm [15]. 
Standard IAA (HiMedia) ranging from 10 to 100 µg/ml 
was used to determine concentration of sample.

Gibberellin production
Isolate was inoculated in NB (100 ml) for 7 days at 30 °C. 
Culture was centrifuged at 2600 × g for 10 min. Super-
natant was used for detection of gibberellin. To 15 ml 
of supernatant, 2-ml zinc acetate was added and incu-
bated for 2 min at room temperature. After incubation, 
2-ml potassium ferrocyanide was added and centrifuged 
at 2600 × g for 10 min. Supernatant was collected, and 
30% HCl was added in equal volume and incubated for 75 
min. After incubation, absorbance was measured at 254 
nm using Shimadzu UV-1800 UV-Visible spectropho-
tometer [16]. Gibberellin ranging from 1 to 10 µg/ml was 
used as standard (HiMedia).

Phosphate solubilization
Organism was inoculated in Pikovskaya’s agar with 0.05% 
bromophenol blue and incubated at 27 °C for 5 days. 
Zone of clearance around colony indicated solubiliza-
tion of phosphate. Quantitative estimation was done by 
stannous chloride method. Organism was inoculated in 
Pikovskaya’s broth (100 ml) and incubated at 30 °C for 5 
days. After incubation, 1-ml culture was centrifuged at 
2600 × g for 10 min. Supernatant was collected and used 
for phosphate quantification. In a fresh test tube, 0.1-ml 
supernatant was diluted with 0.9-ml distilled water. To 
this, 1-ml chloromolybdic acid (15-g ammonium molyb-
date was dissolved in 400-ml distilled water, and 400-ml 
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10-N HCl is added in it with rapid stirring, and total vol-
ume was made 1 L with distilled water) and 0.25-ml chlo-
rostannous acid (2.5-g stannous chloride was dissolved in 
10-ml concentrated HCl, and total volume was made to 
100 ml by distilled water) were added and mixed. Final 
volume of 5 ml was made up with distilled water. Absorb-
ance was measured at 600 nm using Shimadzu UV-1800 
UV-Visible spectrophotometer [10]. Monobasic potas-
sium phosphate was used as standard (HiMedia) ranging 
from 10 to 100 µg/ml for determination of concentration 
of sample.

Potassium solubilization
Organism was inoculated in Alaksandrov’s agar with 
0.05% bromothymol blue and incubated at 27 °C for 5 
days. Zone of clearance around colony indicated solubi-
lization of potassium. Quantitative analysis was done by 
inoculating organism in Alaksandrov’s medium (100 ml) 
having potassium aluminosilicate as the sole potassium 
source and incubated at 27 °C for 7 days. For quantita-
tive assay, 1-ml sodium cobaltinitrite (1 M) was added to 
1-ml supernatant and incubated at 37 °C for 40 min; fur-
ther, it was centrifuged at 2700 g for 10 min. A total of 
10-ml concentrated HCl was added to the pellet resulting 
in development of blue to green colour. Absorbance was 
measured at 623 nm using Shimadzu UV-1800 UV-Visi-
ble spectrophotometer [17]. Potassium chloride was used 
as standard ranging from 10 to 100 µg/ml.

Zinc solubilization
Isolate was inoculated on nutrient agar having 0.1% zinc 
oxide. Plates were incubated at 27 °C for 3 days [18]. Sol-
ubilization index was calculated using the following:

Ammonia production
Culture was inoculated into peptone water broth (0.2% 
peptic digest + 0.05% NaCl) and incubated for 5 days 
at 27 °C. Culture was centrifuged, and to this 200 µl of 
supernatant, 1 ml of Nessler’s reagent was added. This 
was then diluted with 8.5 ml of autoclaved distilled water. 
Brown colour development confirms the presence of 
ammonia. Absorbance was measured at 450 nm using 
Shimadzu UV-1800 UV-Visible spectrophotometer [19]. 
Ammonium sulphate was used as standard ranging from 
0.1 to 1 µmol/ml.

Nitrogen‑fixing test
To test the isolate for its nitrogen-fixing ability, it was 
grown on N-free Jensen media (sucrose 20 g, dipotassium 

Solubilization index =

Zone of solubilization (cm)

Colony diameter (cm)
× 100

phosphate 1 g, magnesium sulphate 0.5 g, sodium chlo-
ride 0.5 g, ferrous sulphate 0.1 g, sodium molybdate 0.005 
g, calcium carbonate 2 g, agar 15 g per 1000-ml distilled 
water) for 2 days at 27 °C. Growth in plates is considered 
positive for nitrogen fixation [20].

Siderophore production
MM9 media was defferated as follows. In 100 ml of 
MM9, minimal media 0.1-M Tris HCl was added, and 
pH was adjusted to 6.8. In this 100 ml, 0.25% 8-hydrox-
yquinoline (prepared in chloroform) was added, and 
this mixture was mixed vigorously in separating funnel. 
Chloroform layer was discarded, and media was washed 
twice with chloroform. This defferated media was used to 
prepare agar plates for qualitative estimation. In this agar 
plates, 10% chrome azurol S (CAS) was added as an indi-
cator. Organism was inoculated and incubated at 27 °C 
for 5 days. Orange halos present around colony confirms 
production of siderophore [21].

HCN production
Organism was streaked on nutrient agar plates with 5% 
glycine. Filter paper dipped in 2% sodium carbonate (pre-
pared in 0.5% picric acid) was placed inside of lid and 
incubated for 5 days at 27 °C after sealing with parafilm. 
Change in colour of filter paper from yellow to brown 
indicates HCN production [22].

Root colonization
Sand was placed inside a sugar tube up to a depth of 6 
cm, and then soil was placed on top, up to a depth of 4 
cm, and autoclaved. The bioformulation of BS 94  (106 
cells/ml) was applied after surface sterilization of seeds. 
These seeds were placed in an autoclaved sugar tube with 
sand and soil that was then parafilm sealed. After 10 days, 
saplings were uprooted, their roots were removed care-
fully with the use of sterile forceps, and they were then 
inoculated on nutrient agar plates to check for bacterial 
colonization [23].

Water agar test
Organism was spread on water agar plates (1% w/v) 
and incubated for 7 days. Five healthy surface-sterilized 
chickpea seeds were randomly chosen and placed on a 
water agar plate, with BS 94 and without BS 94 (Control). 
It was incubated at 30 °C for 5 days [24]. Germination 
percentage and vigour index were calculated by following 
formula:

Germination percentage =
Number of seeds germinated

Total number of seeds
× 100

Vigour index = Germination percentage × 100
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Pot trials
Chickpea seeds of the hybrid desi type procured from 
local market were sterilized using distilled water for 1 
min, 70% methanol for 1 min, followed by 30-s rinse in 
distilled water. Bioformulation of BS 94 was prepared 

using talc, calcium carbonate and carboxymethyl cellu-
lose (CMC). In a sterile metal tray, 15 g of calcium car-
bonate per kg of talc and 10-g CMC per kg of talc were 
mixed and autoclaved [22]. This autoclaved talc and  106 
cells/ml of BS 94 were used to prepare coating slurry. 
Seeds were coated with it, and ten seeds were sown 
per pot. Silty clayey loam soil having pH 8 was filled in 
each pot. Treatments given were as follows: T1—control 
(untreated seeds) and T2—BS 94 (seeds coated with BS 
94 bioformulation).

The pot experiment was conducted in June, when tem-
peratures ranged from 29 to 32 °C using randomized 
block design with three replicates. After 28-day veg-
etative parameters, SOD, POX, proline, phenolic com-
pounds, chlorophyll, carotenoid content [25], flavonoid 
[26], and total proteins [27] were estimated.

Flavonoid estimation
Total flavonoids were estimated by aluminium chloride 
method using quercetin as standard. Leaf sample (5 g) 
was crushed in 10 ml of methanol and centrifuged at 
2000 g for 10 min. Supernatant was transferred in new 
tube and stored at 4 °C. For flavonoid estimation, 125 
µl of extract was added to 75-µl 5% sodium nitrite. The 
mixture was incubated for 6 min at RT. After incubation, 
150-µl aluminium chloride was added and incubated 
for 5 min at RT. After incubation, 750-µl 1-M sodium 
hydroxide was added, and final volume was adjusted to 

Table 1 Biochemical test of BS 94

Test BS 94

Gram staining +

Endospore staining +

Motility +

Salt tolerance 12%

Growth at 50 °C +

Oxidase -

Catalase +

Gelatinase -

Citrate utilization test +

VP test +

Nitrate reductase test +

Urease test +

MR test -

Casein hydrolysis +

Starch hydrolysis -

Triple sugar test +

Lipase -

Hemolytic activity -

Cellulase activity +

Fig. 1 Phylogenetic tree of BS 94 showing maximum similarity with Bacillus licheniformis strain Z9
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2.5 ml with distilled water, and absorbance was meas-
ured at 510 nm using Shimadzu UV 1800 UV-Vis spec-
trophotometer [26].

Total protein
Total protein was determined using Folin-Lowry method 
using bovine serum albumin (BSA) as a standard. Sample 
(5 g) was crushed in 5-ml sodium phosphate buffer and 
centrifuged at 2000 g for 10 min. Supernatant was stored 
at 4 °C. To 1 ml of sample, 4 ml of aluminium copper sul-
phate (Reagent C) was added and incubated for 10 min at 

RT. After incubation, 0.5 ml of Folin–Ciocâlteu reagent 
was added and incubated for 30 min in dark. After incu-
bation, absorbance was measured at 660 nm using Shi-
madzu UV 1800 UV-Vis spectrophotometer [27].

Statistical analysis
All the in vitro quantification assays were done in tripli-
cates. Post pot trials analysis of variance (ANOVA) was 
performed using triplicate data to find the significant 
differences between treated and untreated seeds in each 
vegetative parameter and enzyme assay. Results are pre-
sented as mean ± SD.

Fig. 2 Optimization of growth of BS 94 at different a media, b salt concentration, c temperature, d pH, and e aeration
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Results
Bacterial strain 94 (BS 94) was isolated from marine 
water. BS 94 was able to grow on marine agar, nutrient 
agar, and Luria-Bertani agar, forming white colonies. 
Table  1 displays the outcomes of biochemical tests. 16s 
rDNA sequencing was conducted at Eurofins, Banga-
lore (Fig. 1). The BS 94 sequence was submitted to Gen-
Bank, and accession number assigned is OQ519861. BS 
94 displayed the highest degree of similarity with Bacil-
lus licheniformis strain Z9 under accession number KT 
693282.1.

As shown in Fig.  2, BS 94 was grown under various 
conditions to optimize its growth. The average value of 
triplicates is plotted in the graph where the error bar 
shows standard deviation. In comparison to other media, 
nutrient broth promoted the highest growth of BS 94 
(Fig. 2a). In response to this, nutrient broth was used for 
all testing. Best growth was demonstrated at 0.5% con-
centration of salt (Fig. 2b), 8 pH (Fig. 2c), 37 °C (Fig. 2d), 
and 150-rpm aeration (Fig. 2e).

Isolate did not produce IAA, but gibberellin produc-
tion of 14.2 µg/ml was noted after 7 days. Solubilization 
indices of 1.31 ± 0.03 for phosphate (Fig. 3a) and 1.41 ± 
0.02 for potassium (Fig. 3b) were found positive respec-
tively. Its quantitative analysis showed 16.23 µg/ml of 
potassium and 26.86 µg/ml of phosphate solubilization 
by the isolate. Peptone water was used to test the ammo-
nia production. After 3 days, BS 94 produced 0.45 µmol/
ml of ammonia. BS 94 was able to grow in nitrogen-free 
Jensen media (Fig.  3c) which shows its ability to trans-
form atmospheric nitrogen into fixed nitrogen, an inor-
ganic form of nitrogen which can be easily utilized by 
plants. BS 94 showed no HCN and siderophore produc-
tion nor zinc solubilization.

BS 94 was capable of colonizing roots which was con-
firmed after 7 days of incubation (Fig. 4). This test con-
firms it ability to colonize with root even though it is a 
marine isolate which may help for germination and other 
growth parameters. It was also capable in increasing 

germination in seeds up to 100% (Table  2) along with 
increasing root length (Fig.  5b) as compared to control 
(Fig. 5a).

BS 94 was examined for in  vivo growth promotion in 
chickpea since it demonstrated traits as a plant growth 
promoter in  vitro. The talc-based BS 94 bioformula-
tion considerably enhanced the vegetative parameters 
(Table 3) as well as the SOD (Fig. 6a), POX (Fig. 6b), pro-
line (Fig.  6c), phenols (Fig.  6d), chlorophyll-a (Fig.  6e), 
chlorophyll-b (Fig. 6f ), and carotenoid content (Fig. 6g). 

Fig. 3 a Phosphate solubilization. b Potassium solubilization. c Growth in Jensen media indicating Nitrogen fixing ability

Fig. 4 Root colonization of Bacillus licheniformis 

Table 2 Percentage germination and vigour index of chickpea 
seeds

Treatment % Germination Vigour index

Control 60% 63.6

BS 94 100% 162
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With the BS 94 treatment, plant mass and height both 
rose by 33.85% and 26.23%, respectively.

Discussion
Bacteria stimulating plant growth, comprises of free liv-
ing bacteria which can have symbiotic association with 
plants, and endophytes that can colonize plant’s internal 
tissues. Plant growth-promoting bacteria (PGPB) may 
either directly stimulate plant development by typically 
improving mineral utilization or modifying levels of plant 
hormones or indirectly by reducing the growth-inhibiting 
impacts of several biotic and abiotic factors [28]. PGPB 
improves vegetative growth and boosts plant enzyme 
activity and can support other microbes in a synergistic 
manner to enhance their impact on plants, encouraging 
plant growth [29]. Majority of such PGPB studied are 
from plant’s rhizospheric region, but not much work is 

reported on marine microbes as plant growth promoters. 
Present study focusses on exploring marine microbes as 
plant growth promoters.

Marine isolate BS 94 was identified as Bacillus 
licheniformis. The organism is non-pathogenic as it 
was tested negative for haemolytic activity (Table  1). 
Isolate BS 94 being an endospore-forming bacteria 
will be able to survive in field conditions for longer 
time. B. licheniformis BS 94 was able to grow in wide 
salt and pH range and temperatures as high as 42 °C 
as seen in growth optimization (Fig.  2). Marine Bacil-
lus isolated from saline soil gave up to 10% salt toler-
ance [30], whereas Bacillus licheniformis BS 94 is able 
to tolerate up to 12% salt. This organism can therefore 
be utilized to grow crops in wide pH and salt range and 
at wide range of temperature. It was also found posi-
tive for nitrate reduction, urease and ammonia produc-
tion. Hence, it could participate in nitrogen fixation. 
The most essential component for plant development is 
nitrogen. Ammonia, nitrate and nitrite are three forms 
of nitrogen that plants can absorb [31]. In most soils, 
these nitrogen forms are not in great abundance. In 
these conditions, bacteria’s ability to fix nitrogen plays 
a critical role. BS 94 was found positive for nitrogen 
fixation and also produces ammonia which can sup-
ply nitrogen to plants and thereby promote height and 
their biomass. Coinoculation of nitrogen-fixing bacte-
ria Mesorhizobium ciceri and mycorrhizal fungi Glo-
mus raised chickpea height 23.4% [32], whereas BS 94 
treatment alone increases chickpea height by 26.23% 
(Table 3). BS94 treatment showed increase in total pro-
tein content of leaves which may be due to increase in 
nitrogen as nitrogen present in leaves plays a vital role 
in protein synthesis [33]. BS 94 was able to colonize 
roots; hence, it might contribute in growth promo-
tion and stress tolerance in plants [8]. In addition to 
producing ammonia, BS 94 had the ability to reduce 

Fig. 5 Germination in chickpea seeds. a Control. b Isolate 94

Table 3 Vegetative parameters post pot trial

p-value has been calculated using one-way ANOVA, and its interpretation is as 
follows: ns (p-value greater than 0.05), nonsignificant as compared to control
* p-value between 0.05 and 0.01, significant at 5%
** p-value between 0.01 and 0.001, significant at 1% as compared to control
*** p-value less than 0.001, significant at 0.1% as compared to control

Control BS 94

Total length (cm) 39.6 ± 0.754 50.02 ± 1.08***

Root length (cm) 3.40 ± 0.16 4.01 ± 0.08**

Shoot length (cm) 36.19 ± 0.66 46.00 ± 1.05***

No. of leaves 101.33 ± 2.51 108.33 ± 2.08*

No. of root hairs 32.333 ± 2.5 37.33 ± 1.15*

Total fresh mass (g) 1.27 ± 0.03 1.7 ± 0.21*

Shoot fresh mass (g) 1.124 ± 0.036 1.39 ± 0.19*

Root fresh mass (g) 0.145 ± 0.005 0.30 ± 0.04**

Total dry mass (g) 0.60 ± 0.065 0.69 ± 0.03*

Shoot dry mass (g) 0.523 ± 0.066 0.60 ± 0.033ns

Root dry mass (g) 0.08 ± 0.002 0.086 ± 0.003*
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Fig. 6 a SOD. b POX. c Proline. d Phenol. e Chlorophyll-a. f Chlorophyll-b and g carotenoid. h Total protein. i Flavonoid content of control and BS 
94 post pot trial. Note: p-value has been calculated using one-way ANOVA, and its interpretation is as follows: ns (p-value greater than 0.05), 
nonsignificant as compared to control. *p-value between 0.05 and 0.01, significant at 5% as compared to control. **p-value between 0.01 and 0.001, 
significant at 1% as compared to control. ***p-value less than 0.001, significant at 0.1% as compared to control
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nitrates and produce urease which are the key enzymes 
in nitrogen assimilation. Urease helps in stimulating 
hydrolysis of urea into ammonium, which is utilized by 
plant root [28]. Urease is also involved in bioremedia-
tion of heavy metals [34]. Thus, it will be able to reduce 
plant stress as well. BS 94 produced amylase as it was 
able to hydrolyze starch. Amylases convert complicated 
polysaccharides like starch into glucose or sugar that is 
rapidly utilized by plants and boosts their development 
[35]. Another vital nutrient for plants is phosphorus. 
Phosphorus is a component of adenosine triphosphate 
(ATP), which is produced during photosynthesis and 
is involved in all stages of plant growth, but it is espe-
cially crucial for stimulation of root growth, which 
enhanced seed development [36]. Although phospho-
rus is present in bonded form with inorganic or organic 
molecules, but only the monobasic and dibasic forms 
of phosphorus can be absorbed by plants. The organic 
phosphorus is mineralized by BS 94 so that plants can 
access it. Potassium, the third most important nutrient, 
is likewise available in insoluble form, much like phos-
phate. Both phosphate and potassium were shown to be 
solubilized by BS 94 (Fig. 3). It solubilizes crucial nutri-
ents, which may promote plant growth as indicated by 
the results of vegetative parameters in Table  3. Root 
hairs and root length were observed to increase with BS 
94 treatment, aiding in increased nutrient absorption 
and plant support. BS94 was observed to increase sec-
ondary metabolites like flavonoids which are reported 
to assist in uptake of nutrients as well as lignin synthe-
sis in plants which may help in defence [37, 38]. BS 94 
was also noted to produce gibberellin which may aid 
in embryo’s development potential and improves fruit 
growth and seed germination and induces elonga-
tion of root and stem. Seed germination was more in 
BS 94-treated seeds as compared to control. Marine 
Pseudomonas OG is reported to increase seed germina-
tion up to 93.3% in chickpea [39], whereas with BS 94 
treatment germination rose up to 100%. Additionally, 
physiological trait like seed vigour was also increased 
in treated plants. Seed vigour is essential to promote 
quick and consistent germination of crops, quality of 
seed and its performance in field trials [40, 41]. These 
combined effect of all the nutrients resulted in increase 
of chickpea height and weight by 26.23% and 33.85% 
respectively in pot trials after 28 days, whereas marine 
Micrococcus species was able to increase height and 
weight of chickpea by 19.65% and 21.60% after 30 days 
[10], and rhizospheric bacteria Azotobacter chroococ-
cum treatment resulted in 23.48% increase in height 
after 30 days [42]. Thus, marine isolate B. licheniformis 
BS94 showed better results than other marine and soil 
microbe reported earlier.

Along with essential plant nutrients, BS 94 also stim-
ulated enzymes and other factors involved in plant 
growth and development. Post pot trials, BS 94 showed 
increase in free radical scavengers like superoxide dis-
mutase (Fig.  6a) and carotenoids (Fig.  6g). These anti-
oxidants guard against cellular membrane deterioration 
and function as vital signalling molecules that control 
plant development and stress responses [25]. BS 94 
increases peroxidase enzyme in plant which contributes 
to the production of lignin which increases the rigid-
ity and hydrophobicity of plant cell wall as well as the 
transport of minerals through vascular bundles in plants 
[43]. An increase in phenol and proline content was also 
observed with BS 94 bioformulation which may assist to 
strengthen plant as phenolic compounds are involved 
in lignin synthesis and prolines in cell wall formation 
and abiotic stress. A rise in chlorophyll content in seeds 
treated with BS 94 was seen post pot study. This may be 
due to organism’s ability to assimilate nitrogen and potas-
sium solubilization as nitrogen and potassium are major 
components essential for chlorophyll production along 
with magnesium and iron. Thus, it may be helpful in 
improving chickpea production in the field as well.

This study unequivocally proves that the marine B. 
licheniformis had a favourable effect on chickpea’s growth 
and development. The majority of plant growth promotion 
research is on rhizospheric bacteria; however, knowledge 
of PGP characteristics in marine microorganisms can aid 
in the creation of fertilizers in hitherto unexplored areas.

Conclusion
In present study, marine organism isolated was identi-
fied as Bacillus licheniformis. B. licheniformis was able to 
increase height, biomass and several other enzymes and 
factors which induce growth in plants. Also, as it was able 
colonize roots and tolerate wide environmental condi-
tions; it can be also used for other crops requiring such 
growth conditions. But in addition to this study, further 
investigation into its effect in field conditions and mode 
of action is needed to develop a potent biofertilizer.
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