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Abstract 

Background Staphylococcus xylosus is a coagulase‑negative, gram‑positive coccus that is found in the environment 
and as a commensal organism on the skin and mucosal surfaces of animals. Despite the fact that S. xylosus is consid‑
ered a nonpathogenic bacterium, several studies have linked S. xylosus to opportunistic infections in both animals 
and humans. During an investigation of mastitis‑causing agents in the governorate of Basrah, Iraq, we identified 
an antibiotic‑resistant strain of S. xylosus NM36 from a milk sample from a cow with chronic mastitis. In addition 
to robust biofilm formation, multiple antibiotic resistance phenotypes were found. To further understand the genetic 
background for these phenotypes, the full genome of S. xylosus NM36 was analyzed.

Results The genome consisted of a single circular 2,668,086 base pairs chromosome containing 32.8% G + C. 
There were 2454 protein‑coding sequences, 4 ribosomal RNA (rRNA) genes, and 50 transfer RNA (tRNA) genes 
in the genome. In addition, genetic variation was studied by searching sequence data against a representative refer‑
ence genome. Consequently, single‑nucleotide polymorphism analysis was conducted and showed that there were 
46,610 single‑nucleotide polymorphisms (SNPs), 523 insertions, and 551 deletions. In order to overcome antibiotics, S. 
xylosus NM36 had been armed with several antibiotic resistance genes from several groups and families. The genome 
annotation service in PathoSystems Resource Integration Center (PATRIC) and Rapid Annotation using Subsystem 
Technology (RAST) annotation servers showed that there are multiple antimicrobial resistance elements, includ‑
ing antibiotic inactivation enzymes (BlaZ family, FosB), antibiotic resistance gene clusters (TcaB, TcaB2, TcaR), proteins 
involved in methicillin resistance (LytH, FmtA, FemC, HmrB, HmrA), TetR family transcriptional regulators, and efflux 
pumps conferring antibiotic resistance (NorA). In addition, we investigated and categorized the biofilm and quorum‑
sensing elements of the NM36 strain and found that it has multiple subsets of biofilm regulators, confirming its patho‑
genic nature.

Conclusions These findings necessitate a reevaluation of microbial and clinical interventions when dealing 
with coagulase‑negative staphylococci, particularly in the context of studies pertaining to public health. This 
is the first time, to our knowledge, that the entire genome of S. xylosus has been sequenced in Iraq.
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Background
Staphylococcus xylosus are coagulase-negative, gram-pos-
itive cocci that are widespread in the environment and are 
commensal on the skin and mucosal surfaces of animals. 
Despite the fact that S. xylosus is considered a nonpatho-
genic bacterium, opportunistic infections in animals and 
humans have been linked to S. xylosus in several studies. 
S. xylosus is widespread and could be found in a variety 
of environments, including contaminated water, meat, 
fodder, and soil surfaces [4, 15, 19, 27, 29, 31, 34, 36]. It 
has been shown that coagulase-negative staphylococci 
(CoNS) can play an important role in bovine intramam-
mary infections and also share mobile genetic elements 
that carry virulent factors such as antibiotic resistance 
markers with other family members, including S. aureus 
[21, 34, 62]. In addition to its clinical relevance, S. xylo-
sus may contribute to the pathogenicity of other staphy-
lococci through horizontal gene transfer of antibiotic 
resistance elements such as the SCCmec type 11 region 
and tetracycline resistance [33, 37]. Since S. xylosus is 
becoming increasingly infectious alongside other staph-
ylococci, it is essential to investigate the genome of this 
ubiquitous commensal. S. xylosus has been sequenced 
at the genome level far less frequently than S. aureus in 
the public domain, and none has been performed in Iraq. 
Even though previous studies have done genome anno-
tation and analysis of S. xylosus, a thorough exploration 
of the pathogenicity of this bacterium based on genomic 
information gained through next-generation sequenc-
ing (NGS) is still necessary, particularly for relating data 
from various geographic regions [29]. During an inves-
tigation of mastitis-causing agents in the governorate of 
Basrah, Iraq, we identified an antibiotic-resistant strain of 
S. xylosus (coagulase-negative staphylococci (CoNS) from 
a milk sample of a cow with chronic mastitis. Using disc 
diffusion method, we found that this isolate was resistant 
to methicillin, ampicillin, cefoxitin, oxacillin, and tetra-
cycline but was sensitive to vancomycin. In addition, the 
strain showed notable biofilm-formation capacity. To fur-
ther understand the genetic background for these phe-
notypes, Staphylococcus xylosus NM36 whole genome 
sequencing was undertaken to find variant information 
and to perform gene annotation on key genes relevant to 
antibiotics and biofilm formation.

Methods
S. xylosus NM36 was isolated from a clinical mastitis of 
a cow. Isolation and identification were conducted using 
standard microbiological procedures. Confirmation was 
achieved by sequencing the PCR product of the 16  s 
RNA using universal primers 27F and 1492R [22] and 
blast analysis using the NCBI database [53]. Genomic 

DNA was extracted using the QIAamp DNA Mini Kit, 
Qiagen USA, catalog number 51304, according to the 
manufacturer’s instructions. DNA samples were sent for 
whole genome sequencing using the Illumina platform 
sequencer (Macrogen, Korea). After conducting qual-
ity control (QC), samples for library construction were 
subjected to random DNA fragmentation, followed by 5′ 
and 3′ adapter ligation. Adapter-ligated fragments were 
amplified and purified by PCR and gel. The library was 
fed into a flow cell for cluster generation, where frag-
ments were captured on a lawn of surface-bound oli-
gos that were complementary to the library adapters. 
By means of bridge amplification, each fragment was 
amplified into separate clonal clusters. After the genera-
tion of clusters, the templates were ready for sequenc-
ing. Following sequencing, raw reads were analyzed for 
overall read quality, total bases, total reads, and GC (%), 
and basic statistics were calculated. In order to reduce 
biases in analysis, FastQC [3] and quality-filtering pro-
cesses were performed. The quality of the produced data 
was determined by applying the phred quality score at 
each cycle Q20 (%) and Q30 (%) which helps measure the 
quality of the identification of the nucleobases generated 
by automated DNA sequencing [20]. The raw reads were 
de novo assembled into contigs using the SPAdes v.3.5 
bioinformatics tool [6].

Genome analysis and comparison with other genomes
Staphylococcus xylosus NM36’s assembled genome was 
submitted to PATRIC’s comprehensive genome analy-
sis service, which uses PATRIC’s curated collection of 
representative antimicrobial resistance (AMR) gene 
sequence variants [63]. In order to map reads obtained 
from sequencing, Staphylococcus xylosus was used as a 
reference genome. Filtered reads were mapped to the ref-
erence genome with BWA—Burrows-Wheeler Aligner 
[35]. After read mapping, Picard and SAMTools were 
used to remove duplicate reads and find variant informa-
tion [47]. Broad Institute, [16]. To contrast the mapping 
results, the assembled genome was further annotated for 
functional genes in subsystem categories using the clas-
sic RAST and RASTtk server [5, 11] and the SEED tool 
[45]. In all annotation and comparison processes, the 
similarity threshold was at least 95% identity. The anno-
tated features were further verified and illustrated using 
the PROKSEE server [25] which was used for identify-
ing conserved and unique sequence features and to gen-
erate high-quality maps as previously described [56]. 
Using the SEED tool, the Staphylococcus xylosus NM36 
genome was further compared to other closely related 
genomes (ANMR00000000.1, CP007208.1, CP008724.1, 
CP031275.1, CP066721.1).
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Genome submissions to NCBI GenBank
The genome sequence of Staphylococcus xylosus 
NM36 has been deposited at GenBank—DDBJ/ENA/
GenBank under the accession number GenBank 
JARUHN000000000.1. The annotation was added by the 
NCBI Prokaryotic Genome Annotation Pipeline (PGAP) 
[57].

SNP and INDEL discovery
The mapped data were examined for single-nucleotide 
polymorphism (SNPs) and insertion/deletion (INDEL) 
variations compared to the reference genome. In this 
analysis, the reference genome is based on RefSeq assem-
bly accession: GCF_000709415.1 (CP008724.1). After 
removing duplication and finding variants’ information 
with SAMTools, each variant’s information was gathered 
and classified by chromosomes or scaffolds.

Phylogenetic analysis
The phylogenic analysis package at PATRIC [63] was 
used to categorize reference and representative genomes. 
PATRIC incorporated the reference and representative 
genomes into the phylogenetic analysis included in the 
report on Comprehensive Genome Analysis. In sum-
mary, Mash/MinHash identified the closest reference 
and representative genomes. From these genomes, PAT-
RIC global protein families (PGFams) were selected to 
ascertain the phylogenetic placement of this genome. The 
nucleotides of these sequences were mapped, and multi-
ple sequence comparison by log expectation (MUSCLE) 
was used to align the protein sequences of these families. 
The combined set of amino acid and nucleotide align-
ments was concatenated into a data matrix, and RaxML 
was used to analyze this matrix, with rapid bootstrapping 
used to generate the support values in the tree. In addi-
tion, a phylogenetic tree was built based on the 16 s RNA 
sequence relationship using the NCBI Tree Viewer (TV). 
For this comparison, we selected only the sequences 
whose genomes had been fully sequenced and deposited 
in the NCBI database.

Results
Genome annotation
Based on the annotation data and the contrast to other 
genomes in PATRIC within the same species, this 
genome is considered of good quality. This was con-
firmed by the phred quality score of bases over Q20 
and Q30 which were 98.47% and 94.34%, respectively, 
after read filtering. The Comprehensive Genome Analy-
sis showed that this assembled genome has 73 contigs, 
with a total length of 2,668,086  bp, 2454 coding pro-
teins (Table 1, Additional file 1: Appendices A: Table S1). 

Furthermore, the average GC content is 32.8%. A sche-
matic representation for GC content and GC skew anal-
ysis is shown in Fig.  1. A subsystem is a set of proteins 
that together implement a specific biological process or 
structural complex. The annotation process included an 
analysis of the subsystems unique to this genome, which 
revealed that there are 278 subsystems. An overview 
of the subsystems for this genome is provided in Fig. 2. 
Single-nucleotide polymorphism (SNP) analysis showed 
that there were 46,610 SNPs, 523 insertions, and 551 
deletions compared to the reference genome (Additional 
file 1: Appendices B: Table S2).

Phylogenetic analysis
PATRIC provided the reference and representative 
genomes, which were included in the phylogenetic anal-
ysis. The reference and representative genotypes clos-
est to them were determined and illustrated in Fig.  3. 
It turned out that strains S. xylosus HKUOPL8 and NJ 
(ANMR00000000.1) have the highest similarity. In addi-
tion, a phylogenetic tree was built based on the 16 s RNA 
sequence relationship using NCBI Tree Viewer (TV) for 
the sequences for which their genome had been fully 
sequenced (Fig. 4). This allowed us to select five related 
genomes for sequence-based comparison by the RAST 
tool, which revealed that strain NM36 and the other 
closely related strains possess a high abundance of cod-
ing DNA sequences (CDS), mainly coding for carbohy-
drate and amino acid metabolism (Figs. 2 and 5). In all 5 
genomes, there are 1188 genes with the same annotated 
functions with at least 95–100% identity.

Table 1 Summary for the genome analysis report of NCBI 
prokaryotic genome annotation pipeline (PGAP)

Genome annotation pipeline (PGAP) Results

Total length 2,668,086 bp

GC content % 32.8

Number of contigs 73

Number of subsystems 278

Genes (total) 2530

CDSs (total) 2469

Genes (coding) proteins 2454

CDSs (with protein) 2454

RNA genes 61

rRNAs 2, 2, 3 (5S, 16S, 23S)

tRNAs 50

Pseudo genes (total) 15

CDSs (without protein) 15

Contig L50 7

Contig N50 126,244

Plasmids 0
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Resistance to antibiotics and toxic compounds
A significant number of the genes annotated have 
homology to known virulence factors, transporters, 
drug targets, and antimicrobial resistance genes. To 

filter the results, we combined and filtered the results 
from the SEED, PATRIC, and PROKSEE servers into 
one list. Then we investigated AMR gene sequence 
variants and assigned to each AMR gene a functional 

A B

Fig. 1 Circular genome representation of Staphylococcus xylosus NM36 (PROKSEE server). The inner most ring represents chromosome position, 
and the red‑colored ring represents the genome backbone (in contigs). A GC content (black) and GC skew (green represents values greater 
than the genome average, whereas purple represents value less than the genome average. B The open‑reading frames on the forward strand 
(outside of the backbone) and reverse strands (inside of the backbone)

Fig. 2 Staphylococcus xylosus NM36 distribution statistics for subsystem categories. Using the Rapid Annotation System Technology (RAST) 
server, the genome was annotated. The pie chart displayed the number of each subsystem feature, and the SEED viewer displayed the subsystem 
coverage. The green bar of the subsystem coverage represents the proportion of proteins included in the subsystems, while the blue bar represents 
the proportion of proteins excluded from the subsystems
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Fig. 3 Phylogenic relationship representation of S. xylosus NM36 based on the genome features (using the genome annotation service in PATRIC)

Fig. 4 16S rRNA sequences distance tree depicting the relationship between S. xylosus NM36 (shown in yellow) and related S. xylosus strains 
in the NCBI database (strains with complete genome) using NCBI TV
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annotation, a drug class, and the specific antibiotic it 
confers resistance to. A summary of the AMR genes 
annotated in this genome and the corresponding AMR 
mechanisms is provided in Table 2.

Quorum sensing and biofilm formation
Since the biofilm is essential to staphylococcal biology, 
several regulatory systems that take into account the 
physiological state of the cell, environmental cues, and 
the dynamics within the staphylococcal community 
tightly regulate the formation and disassembly of bio-
films. A list for the annotated genes that are involved 
in biofilm formation in S. xylosus NM36 is listed in 
Table 3.

Discussion
Despite the fact that S. xylosus is considered a non-
pathogenic bacterium, several studies have linked it 
to opportunistic infections in animals and humans. 
S. xylosus is widespread and can be found in numer-
ous environments, such as contaminated water, animal 
feed, and soil surfaces [1, 2, 13, 14, 19, 27, 33, 36, 37, 
62]. S. xylosus may contribute to the pathogenicity of 
other staphylococci via horizontal gene transfer of anti-
biotic resistance elements, such as the SCCmec type 11 
region [37] or tetracycline gene transfer in Staphylococ-
cus xylosus in situ during sausage fermentation, thereby 
exacerbating the risk of antibiotic resistance and pos-
ing a significant risk to public health [33]. In Iraq, there 
is limited information about Staphylococcus xylosus, 

Fig. 5 Graphical genome comparison map of the NM36 strain (reference) with five closely related species using the Seed Viewer sequence‑based 
comparison tool in the RAST server. From outside to inside rings: (1) strain HKUOPL8 (CP007208.1), (2) strain NJ (ANMR00000000.1), (3) strain 
SMQ‑121 (CP008724.1), (4) strain 2 (CP031275.1), and (5) strain 2.1523 (CP066721.1). From purple (100%) to pale red (10%), the colors represent 
the similarity of amino acids to the reference genome. The NM36 reference strain’s genome is not depicted in the figure



Page 7 of 11Al‑Tameemi et al. Journal of Genetic Engineering and Biotechnology          (2023) 21:163  

which is reported occasionally during clinical investiga-
tions [2, 51] and similarly to other coagulase-negative 
staphylococci, and S. xylosus receives less interest com-
pared to the more focus on S. aureus. The pathogenic-
ity of staphylococci has been primarily linked to their 
capacity to resist antimicrobials and form biofilms. 
The initial attachment of bacteria to biotic and abiotic 
surfaces results in the accumulation of multilayered 
cell aggregates that constitute biofilm formation. This 
facilitates the internalization and survival of staphylo-
cocci within the host cells [54]. Therefore, strains that 
facilitate this trait are regarded as more virulent. S. 
xylosus NM36 possesses a number of virulence deter-
minants that have been associated with the ability of 
staphylococci to adhere to biotic and abiotic surfaces, 
as well as the different phases of biofilm formation 
and antimicrobial resistance summarized in Tables  2 
and 3. These results validate the initial phenotypes of 

multiresistance and biofilm formation observed dur-
ing the initial isolation. Comparing the NM36 genome 
of S. xylosus to clinical reference strains revealed its 
arsenal of antibiotic resistance and virulence genes. In 
addition, S. xylosus NM36 contains 9 antibiotic resist-
ance determinants responsible for resistance to 10 
known antibiotics, including quinolone, methicillin, 
teicoplanin, bicyclomycin, chloramphenicol, fosfomy-
cin, ampicillin, cefoxitin, oxacillin, and tetracycline. 
The NM36 genome harbors the ica operon and tran-
scriptional regulator TcaR, both of which have been 
implicated in biofilm formation in staphylococci. It 
also contained the global regulators agr (accessory 
gene regulator), the main autolysin gene atl (autolysin), 
sarA (staphylococcal accessory regulator), and the two-
component system arlRS and srrAB, which are involved 
in the regulation of adhesion and biofilm formation. 
Strain HKUOPL8 (CP007208.1) shares the maximum 

Table 2  S. xylosus NM36 genome analysis for antibiotics resistance. The annotation was based on the protein domain database   [38–
41]

# Contig Start Stop Strand Length (bp) Function

1. JARUHN010000001.1 83,305 84,474  + 1170 Multidrug resistance protein B‑efflux pumps. MFS family multiresistance [17, 46]

2. JARUHN010000001.1 223,144 224,019  + 876 LytH protein, involved in methicillin resistance/N‑acetylmuramoyl‑L‑alanine 
amidase (EC 3.5.1.28) domain [23]

3. JARUHN010000002.1 27,376 25,487 ‑ 1890 Membrane component of multidrug resistance system—conserved domains: 
drug resistance transporter, EmrB/QacA subfamily; SmvA family efflux MFS 
transporter [17]

4. JARUHN010000002.1 28,165 28,713  + 549 TetR family regulatory protein of MDR cluster. Multidrug resistance, 2‑protein 
version found in gram‑positive bacteria [38]

5. JARUHN010000002.1 65,241 65,846  + 606 Transcriptional regulator, TetR family

6. JARUHN010000002.1 137,322 136,774 ‑ 549

7. JARUHN010000004.1 102,889 103,473  + 585

8. JARUHN010000005.1 115,390 114,833 ‑ 558

9. JARUHN010000024.1 3420 3983  + 564 TetR family regulatory protein

10. JARUHN010000027.1 12,167 12,718  + 552

11. JARUHN010000002.1 30,005 28,797 ‑ 1209 Teicoplanin resistance, associated membrane protein TcaB [10]

12. JARUHN010000002.1 31,832 30,447 ‑ 1386 Teicoplanin resistance, associated membrane protein TcaA [10]

13. JARUHN010000002.1 32,591 32,127 ‑ 465 Teicoplanin resistance, associated HTH‑type transcriptional regulator TcaR, 
teicoplanin resistance in Staphylococcus [10]

14. JARUHN010000002.1 111,486 112,688  + 1203 Bicyclomycin resistance protein, TcaB2 [10]

15. JARUHN010000002.1 142,698 141,520 ‑ 1179 Chloramphenicol resistance protein

16. JARUHN010000003.1 100,532 101,692  + 1161 Quinolone resistance protein, norA [18]

17. JARUHN010000006.1 57,874 54,734 ‑ 3141 RND multidrug efflux transporter; Acriflavin resistance protein [44]

18. JARUHN010000007.1 27,204 28,379  + 1176 FmtA protein, involved in methicillin resistance [65]

19. JARUHN010000008.1 5175 4807 ‑ 369 FemC, factor involved in methicillin resistance/glutamine synthetase repressor 
[26]

20. JARUHN010000008.1 106,860 106,627 ‑ 234 Acyl carrier protein/HmrB protein involved in methicillin resistance [30]

21. JARUHN010000012.1 19,897 21,081  + 1185 HmrA protein, involved in methicillin resistance/amidohydrolase of M40 family 
[30]

22. JARUHN010000022.1 24,055 26,580  + 2526 FmtC (MrpF) protein, involved in methicillin resistance/L‑lysine modification 
of phosphatidylglycerol [65]

23. JARUHN010000036.1 2573 2992  + 420 Fosfomycin resistance protein, FosB‑BlaZ family, FosB [58]
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degree of protein similarity with NM36 (Figs. 3 and 5) 
[36]. According to the genome data on the NCBI 
website, strain HKUOPL8 (CP007208.1) was iso-
lated from a clinical case (panda feces) [36], strain NJ 
(ANMR00000000.1) from a nasal swap (human), strain 
SMQ-121 (CP008724.1) from fermented sausage [31], 
strain 2 (CP031275.1) from a milker’s hand, and strain 
2.1523 (CP066721.1) from fermented sausage. This var-
iation in genome similarity may be attributable to life-
style and isolation source differences, which may have 
affected the genetic composition of these isolates [48, 
64]. INDELS are a significant source of genetic diversity 
that can significantly affect the properties or evolvabil-
ity of a protein [52]. Single-nucleotide polymorphism 
(SNP) analysis showed that there were 46,610 SNPs, 
523 insertions, and 551 deletions compared to the ref-
erence genome. Whether some of these mutations are 
advantageous, guiding the protein onwards towards a 
point of high fitness to current selective pressures, or 
not, will require additional research in the future. Simi-
lar to conventional molecular typing, it is probable that 
the genomes of isolates recovered from an outbreak or 
cluster of infections are closely related and may share 

pathogenic traits due to horizontal gene transfer [12]. 
In recent years, the widespread availability of whole 
genome sequencing (WGS) has made it possible to 
examine in greater detail patterns of spread, including 
the detection of previously undocumented transmis-
sion. Whole genome sequencing (WGS) can be used to 
investigate infectious disease epidemics and track the 
spread of infection, but unlike conventional molecular 
typing techniques such as spa typing, pulse-field gel 
electrophoresis (PFGE), and multilocus-sequence typ-
ing (MLST), WGS enables the comparison of entire 
genomes, thereby enhancing the resolution and accu-
racy of metabolic and subsystem maps [50]. How-
ever, the accumulation of genome sequences in the 
databases has been sporadic, with biased sampling of 
natural variation motivated primarily by medical and 
epidemiological priorities. For instance, sequencing 
epidemic lineages of methicillin-resistant Staphylococ-
cus aureus (MRSA) is favored over sequencing sensi-
tive isolates (methicillin-sensitive S. aureus: MSSA). 
As more diverse genomes are sequenced, a picture of 
a highly subdivided species with a limited number of 
relatively clonal groups (complexes) that dominate in 

Table 3 S. xylosus NM36 genome analysis for genes involved in regulation and cell signaling—quorum sensing and biofilm formation. 
The annotation was based on the protein domain database [38–41]

# Contig Start Stop Strand Length (bp) Function

1. JARUHN010000002.1 32,591 32,127 ‑ 465 Transcriptional regulator TcaR (transcriptional inhibitors of the ica locus) [28]

2. JARUHN010000003.1 71,220 73,370  + 2151 Transcriptional regulator of biofilm formation (AraC/XylS family) [24]

3. JARUHN010000004.1 40,722 39,415 ‑ 1308 Putative bifunctional autolysin Atl [9]

4. JARUHN010000007.1 17,600 18,022  + 423 Putative Atl autolysin transcription regulator [9]

5. JARUHN010000007.1 22,546 18,119 ‑ 4428 Bifunctional autolysin Atl/N‑acetylmuramoyl‑L‑alanine amidase (EC 3.5.1.28)/
endo‑beta‑N‑acetylglucosaminidase (EC 3.2.1.96) [9]

6. JARUHN010000003.1 24,247 23,873 ‑ 375 Staphylococcal accessory regulator A (SarA) [7]

7. JARUHN010000021.1 2983 2300 ‑ 684 Response regulator SaeR (Staphylococcus exoprotein expression protein R) [42]

8. JARUHN010000012.1 75,289 76,059  + 771 RNA polymerase sigma factor SigB [32]

9. JARUHN010000021.1 14,393 15,622  + 1230 Polysaccharide intercellular adhesin (PIA) biosynthesis N‑glycosyltransferase 
IcaA (EC 2.4.‑.‑) [60]

15,891 16,742  + 852 Polysaccharide intercellular adhesin (PIA) biosynthesis deacetylase IcaB [60]

16,735 17,802  + 1068 Polysaccharide intercellular adhesin (PIA) biosynthesis protein IcaC [60]

18,351 18,926  + 576 Biofilm operon ica ABCD HTH‑type negative transcriptional regulator IcaR [60]

10. JARUHN010000001.1 352,989 353,711  + 723 Staphylococcal respiratory response protein SrrA [43, 59]

353,680 355,473  + 1794 Staphylococcal respiratory transmembrane histidine kinase protein SrrB  [43, 59]

11. JARUHN010000009.1 14,624 13,908 ‑ 717 agr—accessory gene regulator A (response regulator) [8]

15,932 14,637 ‑ 1296 agr—accessory gene regulator C (sensor histidine kinase) [8]

16,667 16,098 ‑ 570 agr—accessory gene regulator B [8]

12. JARUHN010000008.1 75,944 75,171 ‑ 774 GTP‑sensing transcriptional pleiotropic repressor CodY [49]

13. JARUHN010000002 125,802 127,553  + 1752 Autolysis histidine kinase LytS [55]

127,556 128,320  + 765 Autolysis response regulator LytR [55]

14. JARUHN010000003.1 94,251 93,808 ‑ 444 Transcriptional regulator MgrA (regulator of autolytic activity) [61]

15. JARUHN010000001.1 414,891 415,553  + 663 Putative response regulator ArlR

415,550 416,905  + 1356 Two‑component system histidine kinase ArlS
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specific geographic regions at any given time emerges, 
as reviewed by Planet et al. [48]. Our findings support 
this contention and advocate for whole-genome sur-
veillance of other non-S. aureus populations in animals, 
which could lead to more accurate predictions of anti-
biotic resistance and the virulence of emergent clones. 
Ultimately, this can provide a better understanding of 
the enigmatic biological aspects that determine the 
recurrent strain dominance in endemic areas. In our 
investigation, we sequenced the genome of Staphylo-
coccus xylosus, a coagulase-negative Staphylococcus 
that is often missed in conventional laboratory exams. 
Staphylococcus xylosus NM36’s unique virulence traits 
are a new variable in the complex epidemiology of mas-
titis in Basrah governorate.

Conclusion
This research represents the first investigation into 
the genomic characteristics of S. xylosus within the 
geographical context of Iraq. This observation further 
underscores the need of using whole genome sequenc-
ing and comparative genomics analysis in order to get 
deeper insights into the origins and testing methodolo-
gies of multidrug-resistant isolates. Furthermore, there 
is a need to reassess microbiological and therapeutic 
approaches in the management of coagulase-negative 
staphylococci, especially in the context related to ani-
mal illnesses and public health.
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