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Abstract 

Background The health index of any population is directly correlated with the water quality, which in turn depends 
upon physicochemical characteristics and the microbiome of that aquatic source. For maintaining the water quality, 
knowledge of microbial diversity is a must. The present investigation attempts to evaluate the microflora of Baner. 
Metagenomics has been proven to be the technique for examining the genetic diversity of unculturable micro-
biota without using traditional culturing techniques. The microbial profile of Baner is analyzed using metagenomics 
for the first time to the best of our knowledge.

Results To explore the microbial diversity of Baner, metagenomics analysis from 3 different sites was done. Data 
analysis identified 29 phyla, 62 classes, 131 orders, 268 families, and 741 genera. Proteobacteria was found to be 
the most abundant phylum in all the sampling sites, with the highest abundance at  S3 sampling site (94%). Bacte-
roidetes phylum was found to be second abundant in  S1 and  S2 site, whereas Actinobacteria was second dominant 
in sampling site  S3. Enterobacteriaceae family was dominant in site S1, whereas Comamonadaceae and Pseudomona-
daceae was abundant in sites  S2 and  S3 respectively. The Baner possesses an abundant bacterial profile that holds 
great promise for developing bioremediation tactics against a variety of harmful substances.

Conclusion Baner river’s metagenomic analysis offers the first insight into the microbial profile of this hilly stream. 
Proteobacteria was found to be the most abundant phylum in all the sampling sites indicating anthropogenic 
interference and sewage contamination. The highest abundance of proteobacteria at  S3 reveals it to be the most pol-
luted site, as it is the last sampling site downstream of the area under investigation, and falls after crossing the main 
city, so more human intervention and pollution were observed. Despite some pathogens, a rich profile of bacteria 
involved in bioremediation, xenobiotic degradation, and beneficial fish probiotics was observed, reflecting their 
potential applications for improving water quality and establishing a healthy aquaculture and fishery section.
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Background
Water covers around 75% of the earth’s crust, but nearly 
3% of that water is fresh, and 99% of that 3% is trapped in 
glaciers, polar ice caps, or reservoirs. So, only a trace of 
the whole water of this earth is available as fresh water. 
The hydrosphere is an essential part of a sustainable envi-
ronment, life originated in water, and even the origin and 
development of human civilization are closely related 
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to the river. So, preserving valuable water resources and 
aquatic ecosystems is of utmost importance [53]. The 
quality of freshwater resources has significantly declined 
in recent years due to population growth, rapid urbaniza-
tion, industrial effluents, using fertilizers and pesticides 
for agricultural purposes, and waste disposal. Sustainable 
water management of a river is quite essential to main-
tain stability. The effects of water pollution incidents on 
water quality safety and local inhabitants’ quality of life 
are currently receiving global attention [20, 25, 89]. In 
India, several major rivers have been found to exhibit 
excessive levels of pollution that have adversely affected 
the ecosystem and human population [41, 50, 88, 34, 
14]. Community structure and function dynamics across 
contaminated rivers are essential for understanding and 
assessing human activities’ impacts on water ecosystems 
[63]. In the present scenario, there is an increasing need 
for regular monitoring and assessment of aquatic ecosys-
tems so that further steps may be taken to preserve the 
sustainability of these resources. Comprehensive moni-
toring involves various techniques like physiochemical, 
hydrological, and biological approaches giving the exact 
status of the aquatic ecosystem. The latest trend in bio-
monitoring the ecology of aquatic systems is metagen-
omics through environmental DNA (e-DNA). Free 
DNA molecules, or “eDNA,” are those nucleic acids that 
exist outside of organisms, in the surrounding environ-
ment like soil, water, and snow [12]. They may be shed 
through skin, saliva, gametes, excreta, or corpus remains. 
Whole-genome shotgun sequencing (WGS based on 
next-generation sequencing (NGS is used to create a 
metagenome from eDNA which is taken straight from 
the environment, revealing complete genetic informa-
tion of all the organisms present in that particular envi-
ronment in a single stretch [87, 64]. In situations where 
collecting whole organisms is difficult or not feasible, or 
in case of cryptic, endangered, hidden, invasive species, 
unculturable bacterial species, the fast-expanding study 
of eDNA has proved a boon to identifying species and 
conducting genetic analyses for conserving, managing, 
and research through metagenomics. Microbes are sig-
nificant organisms in freshwater habitats that can play a 
role in a variety of ecological events. Bacteria and fungi 
play a significant role in the conversion of biological and 
non-biological materials by participating in numerous 
biogeochemical cycles such as the nitrogen, carbon, sul-
fur, and phosphorus cycles, which are responsible for the 
ecosystem’s health and balance. Thorough understanding 
of the microbial variety and their functionalities found in 
freshwater bodies is critical for their long-term manage-
ment of aquatic ecosystems [33, 76].

Bacteria are the most prevalent creatures on the planet; 
their composition as well their richness highly affects the 

ecosystem functions and stability whether they are pre-
sent in host-associated colonies, soil, grassland, or seas 
[100, 8, 67, 91, 96, 104]. Aquatic microbiomes play cru-
cial roles in nutrient recycling and aquatic ecology func-
tioning. Various estimations of cell density, volume, and 
carbon reveal that prokaryotes of aquatic habitats are 
cosmopolitan, and amidst the wide variety of cell den-
sities that have been observed till now, the average val-
ues of bacterial composition for several aquatic habitats 
are remarkably similar [100, 76]. The use of river water 
directly for drinking poses severe risks as anthropogenic 
activities generate environmental pollution [9]. Under-
standing the composition of the bacterial populations in 
a freshwater habitat is one of the essential steps in ensur-
ing the health of that particular ecosystem [32]. Moreo-
ver, compared to marine pathogenic bacteria affecting 
human health, freshwater bacteria are less explored [30]. 
Kangra Valley’s residents rely heavily on the portability of 
Baner rivulet water [14]. The emergence of next-genera-
tion sequencing technologies and computational biology 
has open up the new horizons for mining the genome, 
transcriptome, and proteome sequence data. The bioin-
formatics approach for characterization and classification 
of genes and proteins is time-consuming, cost-effective, 
and less laborious and makes it possible to mine huge 
biological dataset [82, 84, 85]. The present investigation 
was an attempt made to evaluate the microflora of Baner 
rivulet using the metagenomics technique. The complete 
microbial profile of Baner is analyzed for the first time to 
the best of our knowledge.

Methods
Study area
Baner rivulet in Kangra, Himachal Pradesh, the site of the 
current investigation, is an essential perennial tributary of 
river Beas, which is one of the major rivers of the Kangra 
district. The Baner rivulet is one of the main sources of 
drinking water for the people residing in district Kangra. 
Baner, with an area of 668  km2, originates in the south-
ern slopes of snow-capped Dhouladhar Mountains near 
Aadi Himani Chamunda Temple, Palampur, Himachal 
Pradesh, India (Table 1; Fig. 1). It drains the central part 
of Kangra district and fans in a south-westward direction 
before merging with Pong Dam close to Mahora Village 
in district Kangra [84, 85]. The area of the investigation 

Table 1 Sampling sites with geo-coordinates

Sampling site Name Latitude Longitude

S1 Jia 32° 9′ 46.49076 76° 27′ 34.236

S2 Chamunda 32° 8′ 46.44852 76° 24′ 52.35156

S3 Bathu (Ranital) 32° 01′ 14.00″ 76° 14′ 35.00″
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for Baner rivulet was divided into three sites. The sam-
pling sites which were selected downstream were  S1 (Jia), 
 S2 (Chamunda Shaktipeeth), and  S3 in Ranital near the 
confluence of Bathu rivulet and Baner.

Sample collection, analysis and sequencing
 The 250 ml of surface water sample was collected in ster-
ile polyethylene bottles from all three sampling sites, i.e., 
 S1 (Jia),  S2 (Chamunda Shaktipeeth), and  S3 (Ranital). The 
sample was carried to the laboratory at 4 °C and stored at 
– 20 °C till further analysis. The debris and coarse parti-
cles were removed by filtering the sample through 1.2 μm 
pore size membrane. Furthermore, the sample was 
passed by 0.2 μm pore membrane for collecting prokary-
otes cell in sample. Metagenomic DNA was isolated from 
the samples from each site utilizing the DNeasy Power-
Water kit (QIAGEN) as per the manufacturer’s proto-
col. All laboratory procedures were performed following 
strict protocols. Enzymatic DNA fragmentation was done 
using KAPA fragkit to produce small double-stranded 
DNA segments. The library preparation was started 
with 200 ng g-DNA. KAPA Hyper Prep kit was used for 

Library Preparation from these dsDNA fragments. End 
repair and A tailing, i.e., the addition of A at 3′ end to 
the dsDNA, was followed by adapter ligation. The adapt-
ers’ sequences complement the dual-barcoded libraries 
in a flow cell for sequencing, enable PCR amplification 
of adapter-ligated fragments, and bind the conventional 
Illumina sequencing primers. The library amplification of 
adapter-ligated libraries was done using KAPA HiFi Hot 
Start Ready Mix and KAPA Library Quantification Kit. 
Sequencing was done by Novaseq 6000 Illumina to gen-
erate raw data in the form of fastq reads.

Bioinformatics analysis of Baner metagenome
Data generation and quality check
The raw fastq data generated by sequencing were checked 
for noise and processed by computational tools. The 
data was pre-processed. The reads were trimmed two 
from the front and three from the tail and filtered on the 
parameter of < Q20. The data quality was improved after 
trimming and filtering, and high-quality reads were used 
for downstream analysis.

Fig. 1 Location map showing three sampling sites of Baner
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De‑novo whole gene assembly
The metaSPAdes-St. Peterburg genome assembler (Meg-
ahit genome assembler) was used for the de novo assem-
bly of microbial genomes. MetaSPAdes tool combines 
the latest algorithmic ideas with already proven solutions 
from the SPAdes toolkit to address different challenges 
of metagenomic assembly [65]. For the complete assess-
ment of organisms in the sample, CCmetagen 1.3 tool 
was used to analyze the diversity from high-throughput 
sequencing of DNA [59]. After the de novo assembly of 
sequence data, contigs in FASTA format were obtained 
for every sample. Following assembly, the contigs were 
uploaded to Prodigal to anticipate open reading frames 
(ORFs) [40]. The coding regions have been recognized 
and separated from noncoding DNA using the gene dis-
covery tool Prodigal.

Taxonomic profiling and annotations of scaffolds
Taxonomic profiling was carried out on all the metagen-
omics samples using National Centre for Biotechnology 
Information (NCBI) taxonomy datasets. Each sequenc-
ing read was assigned to a taxon in the NCBI taxonomy 

compared to a reference database with nucleotide 
sequences. It uses the set of available complete non-
redundant Nucleotide databases (nr Database) that 
includes fungi and microbial eukaryotes genomes. The 
similarity search of reads was performed at NCBI using 
BLAST with default parameters [61]. Furthermore, the 
taxonomy file is used for Krona plot generation using the 
Krona tool [66]. Functional annotations of all the contigs 
were performed using SEED classification. Each contig’s 
function was assigned using the MGA software. The 
protein functions of each contig having maximum align-
ment score from MGA results selected for the functional 
assignment. Pathway analysis was performed using the 
kofam software at KEGG Database [44].

Results
Metagenomics analysis revealed the identification of 29 
phyla, 62 classes, 131orders, 268 families, and 741 genera. 
Krona graphs (Fig. 2) have been used to show the entire 
taxonomy, from kingdom up to species level [66]. The 
detailed description of the data has been given as a com-
parative account at different taxonomical levels (Tables 2, 

Fig. 2 Krona graph showing taxonomy at species level at sampling sites. a  S1. b  S2. c  S1
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3, 4, 5, and 6). The microbiome of Baner showed phylum-
wise dominance ofProteobacteria (23,655, 85%), followed 
by Bacteroidetes (2815, 10%), Actinobacteria (367, 1%), 
and Verrucomicrobia (307, 1%), at  S1. In contrast, at  S2, it 
was Proteobacteria (3270, 82%), Bacteroidetes (272, 7%), 
Actinobacteria (165, 4%), and Firmicutes (40, 1%), which 
is the same pattern as that of  S1, while at  S3, phylum level 
analysis revealed a dominance of Proteobacteria (11,517, 
94%), Actinobacteria (245, 2%), Verrucomicrobia (188, 

1.9%), and Bacteroidetes (128, 1%) (Table 2).
At the class level, the order of dominance in decreas-

ing order at  S1 is Gammaproteobacteria (11,099, 40%), 
Betaproteobacteria (11,049, 40%), Alphaproteobacteria 
(797, 3%), and Actinomycetia (316, 1%). At  S2, the order 
was as Betaproteobacteria (1487, 37%), Alphaproteobac-
teria (1257, 31%), Gammaproteobacteria (328, 8%), and 
Actinomycetia (143, 4%). At  S3, it was Alphaproteobac-
teria (4520, 37%), Gammaproteobacteria (4508, 36%), 
Betaproteobacteria (1323, 11%), and Actinomycetia (237, 
2%) (Table 3; Fig. 3a).

The order level analysis at  S1 resulted in the domi-
nance of Enterobacterales (8171, 29%), Burkholderiales 
(7716, 28%), Rhodocyclales (1988, 7%), Pseudomonadales 
(1470, 5%), and Nitrosomonadales (756, 2%). At  S2, the 
dominance order was Burkholderiales (1227, 31%), 
Hyphomicrobiales (487, 12%), Rhodobacterales (298, 7%) 
Nitrosomonadales (180, 4%), and Sphingomonadales 
(146, 3%). At S3, Pseudomonadales (4104, 33%), Hypho-
microbiales (3301, 27%), Burkholderiales(1127, 9%), and 
Sphingomonadales (1063, 9%) are shown in Table 4.

At the family level, the dominance at  S1 was as follows 
(Table  5): Enterobacteriaceae (8023, 29%), Flavobacte-
riaceae (2431, 9%), Comamonadaceae (2251, 8%), and 
Pseudomonadaceae (1463, 5%). At  S2, it was Comamona-
daceae (430, 11%), Rhodobacteraceae (213, 5%), Nitro-
bacteraceae (180, 4%), Burkholderiaceae (163, 4%), and 
Nitrosomonadaceae (163, 4%). At  S3, it was Pseudomona-
daceae (4097, 33%), Rhizobiaceae (2996, 24%), Sphingo-
monadaceae (1022, 8%), and Acrobacteriaceae (882, 7%), 
(Fig. 3b).

The dominance pattern at the genus level included 
(Table  6) Enterobacter (3819, 14%), Paucibacter (3756, 
14%), Leclercia  (2144, 8%), Citrobacter (1448, 5%), and 

Table 2 Taxonomy abundance at phylum level (top 4)

S1 S2 S3

Proteobacteria (85%) Proteobacteria (82%) Proteobacteria (94%)

Bacteroidetes (10%) Bacteroidetes (7%) Actinobacteria (2%)

Actinobacteria (1%) Actinobacteria (4%) Verrucomicrobia (1.9%)

Verrucomicrobia (1%) Firmicutes (1%), Bacteroidetes (1%)

Table 3 Taxonomy abundance at class level (top 4)

S1 S2 S3

Gammaproteobacteria (40%) Betaproteobacteria (37%) Alphaproteobacteria (37%)

Betaproteobacteria (40%) Alphaproteobacteria (31%) Gammaproteobacteria (36%)

Alphaproteobacteria (3%) Gammaproteobacteria (8%) Betaproteobacteria (11%)

Actinomycetia (1%) Actinomycetia (4%) Actinomycetia (2%)

Table 4 Taxonomy abundance at order level (top 4)

S1 S2 S3

Enterobacterales (29%) Burkholderiales (31%) Pseudomonadales (33%)

Burkholderiales (28%) Hyphomicrobiales 
(12%)

Hyphomicrobiales (27%)

Rhodocyclales (7%) Rhodobacterales (7%) Burkholderiales (9%)

Pseudomonadales 
(5%)

Nitrosomonadales (4%) Sphingomonadales (9%)

Table 5 Taxonomy abundance at family level (top 4)

S1 S2 S3

Enterobacteriaceae 
(29%)

Comamonadaceae 
(11%)

Pseudomonadaceae 
(33%)

Flavobacteriaceae (9%) Rhodobacteraceae (5%) Rhizobiaceae (24%)

Comamonadaceae (8%) Nitrobacteraceae (4%) Sphingomonadaceae 
(8%)

Pseudomonadaceae 
(5%)

Nitrosomonadaceae 
(4%)
Burkholderiaceae (4%)

Acrobacteriaceae (7%)

Table 6 Taxonomy abundance at genus level (top 4)

S1 S2 S3

Enterobacter (14%) Nitrosomonas (4%) Pseudomonas (33%)

Paucibacter (14%) Bradyrhizobium (3%) Rhizobium (20%)

Leclercia (8%) Aeromonas (3%) Sphingobium (8%)

Citrobacter (5%)
Pseudomonas (5%)

Variovorax (2%) Pseudoarcobacter 7%)
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Pseudomonas (1443, 5%), at  S1, while at  S2, it was Nitroso-
monas (152, 4%), Bradyrhizobium (117, 3%), Aeromonas 
(104, 3%), Variovorax (95, 2%), Rubrivivax (76, 1%), and 
Methylibium (76, 1%), respectively. At  S3, it was Pseu-
domonas (4092, 33%), Rhizobium (2401, 20%), Sphingo-
bium (918, 8%), and Pseudoarcobacter (780, 7%).

At the species level, metagenomic analysis revealed 
the order of dominance at  S1 (Table  7, Fig.  4a) as 
Paucibacter sp. KCTC42545 (3756, 14%), Enterobacter 

cloacae complex sp. (2648, 10%), Dechloromonas aro-
matica (844, 3%), and Methylophilus sp. TWE2 (589, 
2%). At  S2, as shown in Fig. 4b, it was as Nitrosomonas 
species (91, 2%), Methylibium petroleiphilum PM1 (76, 
2%), Rubrivivax gelatinous IL144 (76, 2%), and Caulo-
bacteraceae bacterium (37, 0.9%), and at S3, presented 
in Fig.  4c, the order was Pseudomonas putida (1918, 
16%), Pseudomonas mosselii (871, 7%), Sphingobium 
yanoikuyae (855, 7%), and Pseudoarcobacter suis (697, 
6%).

Fig. 3 Comparative graphs showing relative taxonomic abundances at different taxonomic hierarchy levels at  S1 (HP_B),  S2 (HP_C), and  S3 HP_D). a 
Class. b Family. c Phylum

Table 7 Taxonomy abundance at species level (top 4)

Taxonomic hierarchy along with relative percentage of different taxa from sampling sites

S1 S2 S3

Paucibacter sp. KCTC42545(14%) Nitrosomonas sp. (2%) Pseudomonas putida (16%)

Enterobacter cloacae complex sp. (10%) Methylibium petroleiphilum (2%) Pseudomonas mosselii (7%)

Dechloromonas aromatic (3%) Rubrivivax gelatinous (2%) Sphingobium yanoikuyae (7%)

Methylophilus sp. TWE2 (2%) Caulobacteraceae bacterium (0.9%) Pseudoarcobacter suis (6%)
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Discussion
In general, freshwater habitats have microbial taxa that 
are different from those found in marine and terrestrial 
ecosystems. Various estimations of cell density, vol-
ume, and carbon reveal that prokaryotes of freshwater 
habitats are cosmopolitan, and amidst the wide vari-
ety of cell densities that have been observed till now, 
the average values of bacterial composition for several 
aquatic habitats are remarkably similar [100]. All fresh-
water forms are more likely to include Betaproteobac-
teria, Actinobacteria, Bacteroidetes, Verrucomicrobia, 
and Alphaproteobacteria [30, 51]. Similar findings were 
observed during the present study. Proteobacteria were 
found to be the most prevalent and dominating phylum 
in all three sampling sites (Fig. 3c), indicating anthropo-
genic interference and municipal disposal [102]. They 
were most abundant at  S3, revealing it to be the most pol-
luted site, as it is the last sampling site downstream, of 
the area under investigation, which shows more human 
intervention and pollution, as this area falls after cross-
ing the main city. A similar pattern was observed by the 
researchers in earlier studies [42, 56]. Proteobacteria are 
mostly fast-growing copiotrophs that can thrive in envi-
ronments with abundant nutrients, and they are thought 
to be crucial for nitrogen cycling, linking iron-carbon 
biogeochemistry, carbon sequestration, nutrient flux, and 

other biochemical phenomena [52]. The Baner rivulet’s 
metagenomic analysis initially showed a diverse micro-
bial makeup revealing a complex microbial composition 
of both helpful and unfriendly species, detailed in the fol-
lowing section.

Beneficial microbiota of Baner
Bio‑remedial bacterial profile
Several prokaryotic and eukaryotic species have evolved 
defense systems against toxic metals, making them 
benign. With the help of their genes, microbes typically 
biosorb metals and sequester these in their cell walls [17, 
79]. They adopt various mechanisms to respond to heavy 
metal stress, such as exclusion, compartmentalization, 
complex formation, and the creation of binding proteins 
like metallothioneins (MTs) [80–83]. During the present 
investigation, some of bio-remedial species were found in 
Baner that can be utilized to remove heavy metals, harm-
ful chemicals, pesticides, etc.

Few strains of cyanobacterium Synechococcus which 
produce MT have been discovered. Compared to mam-
malian MTs, prokaryotic MT has fewer cysteine residues 
[57]. Synechococcus has been found at all three selected 
sites of Baner and can reduce copper, cadmium, and zinc 
from the environment [103].

Fig. 4 Sankey diagrams showings composition of microbial diversity at division, phylum, family, genus, and species levels. a  S1. b  S2. c  S3
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Leptothrix discophora, gram-negative bacteria, showed 
the capability of oxidizing Mn(II) [13]. It extracts manga-
nese from the environment, synthesizes Mn(II)-oxidizing 
proteins as a component of an extracellular sheath matter 
for the purpose of growth; defense against predation, UV 
light, or viral attacks; and probably also for immobiliz-
ing the toxic metal [2, 92]. The bacteria have the ability to 
produce two different extracellular macromolecules that 
catalyze the oxidation of Fe(II) and Mn(II) which makes 
it useful for bioremediation [21, 95]. The metal-encrusted 
surfaces of Mn(II)-oxidizing bacteria provide biogenic 
Mn(II) oxidation which can be used for the removal of 
Mn(II), Fe(II), and As(III) from potable groundwater. 
The role of Leptothrix sp. and Gallionella sp. in treating 
the groundwater for Mn(II) and Fe(II) removal has been 
suggested by Katsoyiannis and Zouboulis   [46, 47]. Raw 
water is treated biologically by Mn(II)-oxidizing bacteria, 
including Leptothrix cholodnii, in biological filters exten-
sively [46, 47]. Both Gallionella and Leptothrix have been 
found at all three sampling sites  (S1,  S2, and  S3).

Acidovorax sp. is a mesophilic gram-negative bacte-
rium decomposing nitroarene compounds to use 2-nitro-
toluene (2NT) as the only source of carbon and energy 
[58]. Nitroarene compounds are a class of poisonous 
chemicals predominantly man-made and known to 
contaminate soil and groundwater, including chemical 
manufacturing units and explosive factories, grenades, 
and detonation sites [36]. Pseudomonas putida, the 
most abundant species at  S3, was genetically engineered, 
increasing its inherent cadmium binding capacity three-
fold. Similarly, the metal binding capacity of Burkholde-
ria, Alcaligenes, and Ralstonia can also be enhanced so 
that further they may be utilized to eliminate heavy metal 
pollution from sewage and industrially polluted water 
bodies [81, 94]. All these species were abundant in Baner 
rivulet.

Arthrobacter is known to possess growth-promoting 
activity in plants; these bacteria also possess genes for 
uptaking heavy metals, to decompose complex organic 
and inorganic compounds. Their respective genes for 
diverse metal degradation can be utilized for synthesizing 
transgene, which can then be utilized to create artificial 
bacteria that can degrade various xenobiotics [71]. The 
role of Arthrobacter in bioremediation has been proved 
multiple times through the removal of pesticides and 
herbicides, pollutants like 4 chlorophenol, pentachlo-
ronitrobenzene cypermethrin, cyhalothrin, dichlorobi-
phenyls, trichloroethylene, p-nitrophenol, and atrazine 
or removing heavy metal like chromium and iron [11, 43, 
62, 69, 98, 101].

Rare earth metals cerium and neodymium are bioaccu-
mulated by Bacillus cereus [17]. The involvement of Pseu-
domonas in iron and uranium removal has been proved 

earlier [39]. Methylibium petroleiphilum plays an essen-
tial role in bioremediation by eliminating MTBE ( methyl 
tert-butyl ether), a component of gasoline [35].

Paucibacter is good at remediation of Microcystis algal 
blooms and microcystin; microcystin is a carcinogen and 
hepatotoxin for humans and causes mortalities in fish 
and livestock [54, 70]. Leptothrix and Dechloromonas are 
sulfur oxidation bacteria converting hydrogen sulfide to 
sulfur element or sulfate and removing toxic compounds 
with foul-smell like  H2S [19, 106]. Dechloromonas aro-
matica plays important role in the biodegradation of 
benzene [73]. Sphingobium sp. degrades phenanthrene 
(component of plastics), pesticides, explosives, and drugs. 
Aromatic molecules, glycan polymers, metal ions, xeno-
biotics, and resistive substances are all catabolized by the 
Variovorax paradoxus [74]. Acinetobacter sp., Klebsiella 
sp., and Elizabethkingia sp. efficiently biodegrade cipro-
floxacin and levofloxacin [77]. Rhizobacter gummiphilus, 
found at all three sites, participates in the degradation 
of rubber, a component of tyres and surgical gloves [45]. 
Rhodobacter sphaeroides have an excellent potential for 
heavy metals bioremediation [5, 15]. Stenotrophomonas 
maltophilia has been found at both  S2 and  S3 which has 
been proven to transform As(V) to As(III) and nontoxic 
arsenobetaine in the fish gut [90].

Potential probiotics for fish
During the present study, several probiotic bacteria were 
found in Baner which are helpful for humans as well as 
aquatic organisms. Probiotics are microorganisms or 
derivatives from them that provide good health and 
growth of the host that are used in aquaculture to man-
age the disease, complement immunity, and in some cir-
cumstances even substitute the use of antibacterial agents 
like antibiotics. Fish are benefited in many ways through 
these probiotic bacteria, including growth promotion, 
pathogen colonization inhibition, improved digestion, 
water quality, stress tolerance, and fertility improvement 
[23]. The findings of the studies on fish probiotics were 
reported earlier [16] which showed that the bacteria pre-
sent in the aquatic systems impacted the gut microbial 
diversity and vice versa. Species that can survive and pro-
liferate in the digestive system often appear to be those 
from the surroundings or the food.

The probiotics can offer a promising approach for con-
trolling the bacterial, fungal and parasitic infections in 
fishes [93]. The role of Enterococcus faecium as a probiotic 
for improving the health of Labeo rohita has been proved 
previously [31]. The Bacillus sp. has also been recognized 
a good fish probiotic involved in overall development 
[37]. Bacillus subtilis and B. circulans enhanced the fish 
growth and eliminated the anti-nutritional factor mimo-
sine [6, 7]. Lactobacillus sp. also shows good probiotic 
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potential, inhibiting activities against harmful fish patho-
gen Aeromonas hydrophila and boosting fish health [4, 
27, 75]. Micrococcus and Pseudomonas are good as probi-
otics for enhancing fish growth [1]. The probiotic activity 
of Roseobacter against Vibrio anguillarum infection has 
been proved efficient earlier [22, 38, 68]. Rubrivivax gela-
tinosus is a probiotic as a bacterium, and its biomass and 
by-products boost the immune system of fish to combat 
pathogens and enhance growth [28, 29]. Sharifuzzaman 
and Austin [78] observed that the cellular components of 
Rhodococcus improved rainbow trout resistance against 
Vibrio anguillarum. The probiotic activity of Altero-
monas sp., Phaeobacter gallaeciensis, and Pseudomonas 
damselae against Vibrio splendidus and V. coralliilyticus 
has been reported [48, 49]. Shewanella putrefaciens and 
Shewanella baltica were examined for their probiotic 
potential in fishes which heightened immune response 
and increased resistance to Photobacterium damselae 
[24]. All abovementioned probiotic bacteria have been 
found in the microbial profile of Baner.

Pathogens
Several disease-causing pathogens have been found dur-
ing the metagenomics study of the river during the pre-
sent investigation. The species of Aeromonas (Aeromonas 
veronii) was reported, which acts as a fish and oppor-
tunistic pathogen to humans [55]. Vibrio sp. causes dis-
eases in fish, but being zoonotic also infects birds and 
animals; consumption of undercooked infected fish 
causes gastrointestinal problems in humans [10, 18]. 
Spiroplasma has been observed as a severe pathogen of 
crayfish [99],  Nocardia is being found in multiple hosts 
including fish and human [26, 60] and acts as a fish path-
ogen [3]. Flavobacterium sp., Citrobacter sp., Proteus 
sp., Klebsiella sp., Comamonas, Plesiomonas, Ralstonia, 
Chryseobacterium, vibrio, and Edwardsiella have been 
recognized as fish pathogens [97]. Comamonas, Ralsto-
nia sp., Ochrobactrum sp., Pseudomonas sp., Sphingo-
monas sp., and Brevundimonas sp. are also opportunistic 
pathogens [72]. Leclercia adecarboxylata is also a human 
opportunistic pathogen affecting immunocompromised 
hosts [105]. All these pathogenic microbiota were also 
reported at the sites of Baner rivulet. Furthermore, more 
deep studies are required to carry on the Baner regarding 
control of these types of pathogenic microorganisms.

Conclusion
The first-time metagenomic study of Baner rivulet 
revealed Proteobacteria to be the most dominating 
phylum at all the sampling sites indicating municipal 
wastes, human excreta, and anthropogenic pollution. 
Proportionately, more presence of Proteobacteria at 

 S3 indicates fecal pollution and more anthropogenic 
interference at this site.  S3 is the last point of inves-
tigation and falls downstream the river after cross-
ing the main city, so more anthropogenic impact has 
been observed. As several human, fish, and zoonotic 
pathogens were found in the water, it is advised to be 
watchful, periodically disinfect, and use appropri-
ate bio-remedial techniques as the water of Baner has 
been lifted by the Himachal Pradesh Irrigation and 
Public Health Department both for drinking and irri-
gation purposes. However, the Baner also possesses an 
abundant bacterial profile that holds great promise for 
developing bioremediation tactics against a variety of 
harmful substances, such as heavy metals, pesticides, 
xenobiotic, nitrogen and sulfur, phenol, and toluene 
metabolism, and also has good potential for probiotics 
concerned with fish health. The genes of bio-remedial 
and probiotic bacteria can be identified and exploited 
through genetic engineering or transformation for 
healthy aquaculture and fishery sector. As the water is 
used for drinking and agriculture, it is good that it is 
being purified of heavy metals and pollutants by natural 
mechanisms. The findings of the present research may 
also be used as a basis or case study in the future for 
supporting further freshwater microbiome research. 
Additionally, it is possible to recover and clone the 
expected gene pool for xenobiotic degradation to create 
new bioremediation techniques in the future.
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