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Abstract 

Background Phytase supplementation in rations can reduce their phytic acid composition in order to enhance their 
nutritional value. Aspergillus niger is a fungus that can encode phytase. This study aims to determine the character‑
istics of its DNA sequences and amino acid composition that encode the phytase enzyme, as well as to determine 
the primer designs.

Method This study used gene sequence data and protein‑encoding phytase from Aspergillus niger that was collected 
manually from NCBI and PDB. The data was analyzed using SPDBV and then be aligned using the ClustalW Multiple 
Alignment features. The phylogenetic tree was built by Mega11 software. Primers were designed from selected candi‑
date sequences that were analyzed. The designed primers were then simulated for PCR using FastPCR and SnapGene 
software.

Results There are 18 Aspergillus niger phytases in NCBI which is 14.87% of the total Aspergillus. There are 14 Aspergillus 
niger phytases that have identity above 95%. Aspergillus niger 110. M94550.1 is the closest strain to the PDB template. 
Candidate sources of phytase genes are Aspergillus niger 110.M94550.1, 48.2.BCMY01000003.1, and 92.JQ654450.1. The 
primer design has 2 possibilities of self‑annealing and high melting temperature on the reverse primer. PCR simula‑
tion shows that the primer design can attach completely but still has the possibility of mispriming.

Conclusion This study suggests promising results for the future development of phytase enzyme produc‑
tion from Aspergillus niger as a feed additive using genetic engineering to enhance the quality of livestock feed 
in Indonesia.
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Background
Feed is the primary energy source for livestock to carry 
and support the maintenance and productivity [1]. Indo-
nesia used feed from agricultural products and its by-
products, which have high phytic acid concentration [2]. 
Phytic acid (myo-inositol hexakisphosphate) is a form 
of phosphorus storage in the feed crops such as grains, 
cereals and legumes [3]. Phytic acid is an antinutrient, 
especially for monogastric [4]. Phytic acid can bind other 
minerals such as Fe, Mg, Zn, Ca, and nutrition such as 
protein [4, 5]. Therefore, it might inhibit the absorption 
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of the protein and minerals in the feed [3, 6]. Phytase 
supplementation is important for feed quality and there-
fore feed efficiency [7]. Phytase enzymes are still limited 
in Indonesia. In Indonesia, the technology, people, and 
material resources are still inadequate to produce their 
own phytase. However, Indonesia has the potential to 
produce phytase using native gene sources [8].

Phytase (myo-inositol hexakisphosphate phosphohy-
drolases) is an enzyme that catalyzes the release of phos-
phate from phytic acid [3, 8]. Phytase is widely used to 
overcome the problem of phytic acid and can be used as 
a feed additive for monogastric. Previous studies showed 
that phytase can improve nutrient absorption, espe-
cially P and Ca, reduce dependence on the use of min-
eral source feed additives, and reduce the environmental 
impact of monogastric due to the excretion of phytic acid 
in the feces [3, 7]. Phytase initiates stepwise removal of 
phosphate by decreasing their phosphorus excretion 
from phytate [3]. A. niger, A. oryzae, F. venenatum, S. cer-
eviciae, P. pastoris, K. lactis, P. griseoroseum, and E. coli 
have been identified as host strain of phytases from fun-
gal and bacteria isolates [9].

One of the methods to produce phytase is by genetic 
engineering using fungi. Aspergillus niger has been exten-
sively reported in various literature as a fungus that can 
encode phytase (phyA and phyB) [8]. Based on its cata-
lytic activity, A. niger phytase belongs to the histidine 
acid phosphatase (HAP) group [4, 10], which has activ-
ity under acidic conditions and is widely used as a hydro-
lyzer of phytic acid in animal feed [3]. The Aspergillus 
family has an active site motif -RHGXRXP- for catalysis 
and attachment and an -HD- motif for substrate attach-
ment and product release [11]. The phytase production 
by fungi has been achieved through the use of solid-state 
and submerged fermentation methods [8, 12]. The first 
generation of commercial phytase was a fungal phytase 
from Aspergillus niger introduced in 1991 and marketed 
under the name Natuphos [13].

Bioinformatics study is an initial step of genetic and 
protein engineering [14]. This study allows some genetic 
engineering to be simulated by certain software and pro-
duce various kinds of data for genetic engineering [15, 
16]. These data include the sequence and structure of 
genes and proteins, the level of kinship (phylogenetics), 
and the active site of the protein (enzyme). Therefore, 
this study aims to determine the characteristics of its 
DNA sequences and amino acid composition that encode 
the phytase enzyme, as well as the primer designs for it. 
Primer design can be used in further genetic engineering 
processes such as the isolation of target genes from the 
genome of the microbial gene source and identification of 
the presence of genes encoding target enzymes to show 
the potential of fungi in producing enzymes.

Methods
The 3D structure of phytase
The 3D structure of phytase was obtained from the Protein 
Data Bank (PDB) in (.pdb) format. The data obtained is 
information about the target enzyme, in this case, phytase 
from A. niger. The collected data was then combined with 
relevant literature for further study. The data was then 
analyzed using Swiss Protein Data Bank Viewer (SPDBV) 
software to determine the active sites and to observe 
the phytase enzyme protein structure in detail [14]. The 
obtained phytase protein sequences were then used as a 
template on sequence alignment and phylogenetic analysis.

Sequence data collection
The data of Aspergillus was collected manually from the 
gene bank of the National Center of Biotechnology Infor-
mation (NCBI) [14, 17]. Then the data is numbered based 
on the order in which the data was found. This helps us 
while analyzing DNA and protein sequences. The data 
used in this bioinformatics study is the coding region 
data (CDS) of DNA sequences and amino acids from A. 
niger. The sequence data was obtained and stored in the 
form of FASTA (.fas).

Sequence alignment
Sequence alignment was performed using BioEdit soft-
ware. A. niger DNA and protein sequence data will then 
be aligned using the ClustalW Multiple Alignment fea-
tures [18]. The alignment data is then stored in the form 
of Genbank files (.gb) and FASTA (.fas).

The phylogenetic tree
The phylogenetic tree was designed using the Mega11 
software. The CDS sequence data that has been aligned 
and entered into the software will be processed using the 
construct/test maximum likelihood tree feature. The sub-
stitution method used in making this phylogenetic is the 
kimura parameter model 2 [19]. The kimura parameter 
model 2 was used for the substitution method in con-
structing this phylogenetic tree. The resulting tree will 
be analyzed to determine the degree of kinship between 
sequences. A high level of kinship and homology will be 
considered when selecting candidate sequences.

Primer design
Primer design was made with the help of primer 3 + soft-
ware using predetermined candidate sequences. Primer 
designs are made using complementary reverse start and 
end codons from the specified candidate CDS data. So, 
the A. niger phytase enzyme can be completely encoded. 
There are several criteria in making primers in this study, 
including the base pairs (bp) length between 18 and 
30  bp and GC content between 45 and 60% [20]. The 
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most optimal primers were then revalidated using oligoc-
alculator software from http:// bioto ols. nubic. north weste 
rn. edu/ Oligo Calc. html. The software was set to identify 
hairpin and self-dimerization with a minimum of 3 bp.

Primer simulation
The designed primers were then simulated for polymerase 
chain reaction (PCR) using FastPCR and SnapGene soft-
ware [20, 21]. In silico simulation by FastPCR software is 
used to indicate the melting temperature, annealing tem-
perature, and amplicon size that will be produced. FastPCR 
set by 0 mismatches to indicate the primers can anneal per-
fectly. SnapGene software is used to see the possibility of 
how primers anneal by showing the picture of PCR.

Results
3D structure
Based on PDB observations, we obtained the protein 
structure of phytase enzymes derived from A. niger 3k4q 
and 3k4p consisting of 444 amino acids. The protein 
secondary structure and peptide molecular structure 
accompanied by myo-Inositol hexasulfate (IHS) projec-
tion on the structure of A. niger 3k4q (Fig. 1). The active 
site is located in the gap between the large α-helix/β-
sheet domain and the small α-helix domain (Fig. 1A). A 
close-up view of phytase (Fig.  1C) clarifies the location 
of the active site in the overall protein. Sulfate groups 
bind to Y28, R58, H59, R62, R142, K278, H338, and D339 
residue (Fig. 1B). Therefore, there is no direct interaction 
between the enzyme and the inositol ring.

Fig. 1 3D structure observation using SPDBV. A Secondary structure β‑sheet shown by purple, α‑helix by light blue, and loops by white (green 
on C). B The creatine phosphokinase (CPK) format consists of red for oxygen, blue for nitrogen, orange for phosphate, green for hydrogen bonds, 
and white to show amino acid molecular bonds

http://biotools.nubic.northwestern.edu/OligoCalc.html
http://biotools.nubic.northwestern.edu/OligoCalc.html
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Data collection
Based on Aspergillus phytase data contained in NCBI 
(data not shown). Aspergillus phytase consists of 121 
data. There is 18 (14.87% total) of phytase data from 
17 A. niger (Table  1). Some A. niger data were whole 
genome shotgun sequences and CDS with a range of 
1404–2071  bp and 467–522aa originating from China 
and India while most of the data were not mentioned.

Sequence alignment
In addition, multiple sequence alignments were 
performed to find a conserved motif in the DNA 
sequences. A total of 18 phytases were aligned with A. 

niger 3k4p as a base template (Fig. 2). A. niger phytase 
is well conserved as indicated by the dot mark. Char-
acteristics sequence based on A. niger 3k4p also shows 
in (Table 1). There are 14 organisms with an identity to 
each other of 95% (Fig.  2). Phytase A. niger 3k4p has 
the closest kinship with phytase 110. AAA32705.1 and 
shows 95% identical. Phytase 113.AAA16897.1 and 107.
AAA02934.1 had an identity with each other of 98.8% 
and were the most distantly related A. niger phytase fol-
lowed by 48.1.GAQ37582.1 and 49.GAQ46510.1. Both 
have identities with templates below 22%. Based on the 
alignment of 14 A. niger phytase, the mutations were 
found in the phytase sequence (Table 2).

Table 1 Sequence characteristics based on A. niger 3k4p

DNA deoxyribonucleic acid

No Organism Accession number, length Product Active site

DNA Amino acid

48 A. niger, An76 BCMY01000003.1
2.393.285 bp

GAQ37582.1
522aa

Phytase B precursor H78/D385

GAQ37712.1
467aa

Phytase H82/D362

49 A. niger An76 BCMY01000021.1
600.870 bp

GAQ46510.1
517aa

Phytase H64/D363

85 A. niger AB022700.1
1.515 bp

BAA74433.1
467aa

Phytase H82/D362

92 A. niger strain MI 2 JQ654450.1
1.515 bp

AFJ79736 .1
467aa

Phytase H82/D362

93 A. niger MI 1 JQ654449 .1
1.515 bp

AFJ79735.1
467aa

Phytase H82/D362

94 A. niger strain N14 AY426977.1
1.525 bp

AAR08366.1
467aa

Phytase H82/D362

95 A. niger AY745739.1
1.506 bp

AAU93518.1
467aa

Phytase H82/D362

97 A. niger var awamori L02421.1
2.379 bp

AAA16898.1
467aa

Phytase H82/D362

98 A. niger phytase JQ241266.1
1.404 bp

AFE56108.1
467aa

Phytase H82/D362

104 A. niger EF197825.1
1.934 bp

ABM92786.1
467aa

Phytase A H82/D362

107 A. niger L20567.1
1.861 bp

AAA02934.1
479aa

Phytase b H82/D338

108 A. niger phytase AY513749.1
1.506 bp

AAS00648.1
467aa

Phytase A H82/D362

110 A. niger M94550.1
2.665 bp

AAA32705.1
467aa

Phytase H82/D362

111 A. niger, NII 08121 JN196454.1
1.506 bp

AET71192.1
467aa

Phytase A H82/D362

112 A. niger AF218813.1
1.528 bp

AAF25481.1
467aa

Phytase precursor H82/D362

113 A. niger var awamori L02420.1
2.071 bp

AAA16897.1
479aa

Acid phosphatase H82/D338

114 A. niger BCC18081 EU786167.1
1.404 bp

ACE79229.1
467aa

Phy A H82/D362
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Phylogenetic tree analysis
The phylogenetic analysis showed the classification 
that aims to estimate the evolutionary relationship of 
an organism [22]. We found that both the DNA and 
amino acid sequence of A. niger phytase are divided 

into 4 groups as shown in (Fig.  3). A. niger 110.
M94550.1 was the closest source to the template.

Primer design
We selected three candidates based on kindship and 
homology of sequences. There are A. niger 110.M94550.1, 

Fig. 2 Diagram of the amino acid (top) and gene (bottom) alignment. The red box shows the active site motif in the sequence

Table 2 Mutated sequence fragment from A. niger phytase

* Conserved amino acids

Code V276 S278 E284 T291 T293 S312 K317 D328 N332 K340 D409

110 * * * * * * * * * * *

48.2 * * * S * N * E * * *

94 * * * S * N * E * * *

104 * * * S S N N E * * *

108 * * * S S N N E * * E

112 * T * S * * * * * * *

97 A * * * * * * * H * *

114 * T * S * * * * * * *

85 * * * S * * * E * N *

92 * * * * * * * E * N *

98 * * * S * * * E * N *

93 * * * * * * * E * N *

111 * * * * * * * * * * *

95 * * G S * * * * * * *
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48.2.BCMY01000003.1, and 92.JQ654450.1 (Table 3). The 
complementary reverse start and end codons of the three 
primer designs are quite identical to each other. All sec-
ondary structures showed good results with only 2 and 
3 possibilities of self-annealing and no hairpin possibility 
occurred (Table 4).

Primer simulation
The PCR simulation using FastPCR shows that all three 
primers have a maximum amplicon size and high anneal-
ing temperature (Table  5). PCR simulation using Snap-
gene shows all primer designs still have the possibility of 

mispriming. This is indicated by the disconnected arrow 
(Fig. 4).

Discussion
Enzymes are proteins that act as biocatalysts for a reac-
tion. İt is a macromolecule composed of amino acids and 
is synthesized by nucleotides by encoding nitrogenous 
bases into amino acids. Phytase 3k4p has a complex 
structure and good stability shown by the dominance of 
the α-helix amino acid structure. The dominance of the 
α-helix structure indicates that the protein is non-polar/
hydrophobic and results in good stability. A previous 

Fig. 3 Phylogenetic tree based on amino acids (top) and genes (bottom)
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Table 3 Primer design results with Primer3 + (P3) and oligocalculator (Olc)

Oligocalculator (Olc), Primer 3 + (P3 +), melting temperature (Tm), Base pair (bp)

Code Sequence Base Tm (°C) GC content (%)

P3 + Olc P3 + Olc

(….. primer forward…..)

48.2 5′ATG GGC GTC TCT 
GCT GTT C3′

19 bp 61.4 59.5 57.9 58

92 5′ATG GGT GTC TCT 
GCC GTT C3′

19 bp 61.1 59.5 57.9 58

110 5′ATG GGC GTC TCT 
GCT GTT CTA CTT 3′

24 bp 64.7 65.2 50 50

(……primer reverse…..)

48.2 5′CTA AGC AAA ACA 
CTC CGC CCA ATC 3′

24 bp 66.9 65.2 50 50

92 5′CTA AGC AAA ACA 
CTC CGC CCA ATC 3′

24 bp 66.9 65.2 50 50

110 5′CTA AGC AAA ACA 
CTC CGC CCA ATC 3′

24 bp 66.9 65.2 50 50

Table 4 Results of the analysis of primary secondary structures

SA self-annealing, SC self complementary, C complementary

Code Primer 3 + Oligocalculator

SA SC Hairpin SA C Visualization

(……Primer forward…..)

48.2 2 ‑ ‑ 2 ‑ 5′ ATG GGC GTC TCT GCT GTT C 3′
3′ CTT GTC GTC TCT GCG GGT A 5′
5′ ATG GGC GTC TCT GCT GTT C 3′
3′ CTT GTC GTC TCT GCG GGT A 5′

92 2 ‑ ‑ ‑ ‑ ‑

110 2 ‑ ‑ 2 ‑ 5′ ATG GGC GTC TCT GCT GTT CTA CTT  3′
3′ TTC ATC TTG TCG TCT CTG CGG GTA  5′
5′ ATG GGC GTC TCT GCT GTT CTA CTT  3′
3′ TTC ATC TTG TCG TCT CTG CGG GTA  5′

(……Primer reverse…..)

48.2 3 ‑ ‑ ‑ ‑ ‑

92 3 ‑ ‑ ‑ ‑ ‑

110 3 ‑ ‑ ‑ ‑ ‑

Table 5 Results of PCR simulation using FastPCR

PCR polymerase chain reaction, Tm melting temperature, Ta annealing temperature

Code Primer Position % anneal Tm (°C) Ta (°C) Amplikon 
size 
(product)

48.2 Forward 1–19 100 62.4 70 1404

Reverse 1381–1404 100 64

92 Forward 1–19 100 62.5 70 1515

Reverse 1492–1515 100 64

110 Forward 1–24 100 66.2 72 1506

Reverse 1483–1506 100 64.0
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study reported that the α-helix domain plays a role in 
stabilizing amino acid residues in A. niger phytase [11]. 
The α-helix structure is a secondary structure that can 
improve thermal stability with a critical role in energy 
dissipation [23, 24]. However, the active site is stiffer than 
bacterial HAPs, because the α-helix on the C-terminus 
of the RHGXRXP-containing loop is shorter than bac-
terial HAPs  [25]. Active site flexibility is considered a 

requirement for lowering the free energy barrier, improv-
ing active site accessibility, and accelerating catalytic effi-
ciency [26].

The active site of phytase A. niger contains five disulfide 
bonds. Most of them are located on loops near the sur-
face of the phytase protein [10]. Residues contact IHS via 
hydrogen bonds with all sulfate groups except 6-sulfate. 
IHS is an inhibitor used to analogize phytic acid or IHP. 

Fig. 4 PCR simulation of Snapgene phytase A. niger 4.8.2.BCMY01000003.1 (A), 92.JQ654450.1 (B), and 110.M94550.1 (C). Forward primer (orange), 
reverse primer (green)
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The IHS is isosteric and isoelectronic with myo-inosi-
tol hexaphosphate (IHP) [11]. The phytic acid in feed 
is attracted by hydrogen bonds and then interacts and 
reacts directly with amino acid residues through phos-
phate groups, thus forming a covalent phospho-histidine 
intermediate bond [25]. This process is then followed by 
hydrolysis and release of histidine residues.

Our present study found that Aspergillus can encode 
two phytases. This can be attributed to the fact that A. 
niger is a eukaryotic fungus. A. niger 48.1 is still in the 
form of phytase precursor and 48.2 is already in the form 
of phytase. This is possible because the first phytase car-
ries a signal peptide that will determine the location of 
the expression of phytase, which is outside the cell [27]. 
So that the new phytase will be active after this signal 
peptide is released when it finishes delivering phytase 
to its place of expression. The second phytase will be 
expressed inside the cell.

Analysis of the amino acid sequences of gene and 
amino acid aims to identify the conserved motif of 
phytase from A. niger. The identity has a good result 
as shown before, with conserved histidine as a part of 
a catalytic site [4]. High identity showed a highly simi-
lar product as the template based on the presence of a 
conserved motif, indicating that the sequence is a part 
of histidine acid phosphates (HAP) [8]. Alanine replaces 
the glycine motif on phytase 49.GAQ46510.1 and did 
not present a conserved signature motif in the amino 
acid sequences indicating that the phytase may not be 
from these isolates of histidine phosphatase. This makes 
the active site molecule slightly stiffer but, more stable. 
In addition, alanine is more hydrophobic (as indicated 
by the greater hydropathy value) and larger relative mol-
ecule mass than glycine [28].

The present study found phytases have similarities in 
the mutations. These similarities are then taken into con-
sideration in determining the candidate source of A. niger 
phytase. A. niger is a HAP enzyme with characteristic 
motif –RHGXRXP– and –HD– [11, 25]. Therefore, delib-
erate mutation can only be performed on amino acid X 
(unknown/other) which based on the result is shown by 
alanine and tyrosine. Both amino acids can be converted 
into uncharged or aromatic non-polar amino acids such 
as valine and phenylalanine [4, 28].

Phylogenetics based on A. niger phytase gene 
sequences showed these results were not much different 
from those shown by phylogenetic trees made based on 
amino acids. This is the sequence representative within 
a clade constitute reference [29]. Therefore, the can-
didate phytase gene source of A. niger 110.M94550.1 
was obtained, which is the most identical gene source 

to A. niger 3k4p, as well as 48.2.BCMY01000003.1 
and 92.JQ654450.1 that are the best representative of 
the gene source group that has certain characteristic 
mutations.

The three primer designs are quite identical with a 
low secondary structure. This also lowers mispriming 
due to complementation between primers or between 
forward and reverse primers such as self-annealing, 
hairpin, and nonspecific amplification [30]. The limita-
tion of the primer design is the annealing temperature 
on primers was the same as the extension temperature. 
Annealing temperature ranges from 45 to 60  °C and 
72 °C for extension temperature [31]. The high anneal-
ing temperature certainly causes the attachment to be 
not optimal because the primer is difficult to anneal 
[32]. Based on PCR simulation using Snapgene, all the 
designs still have mispriming possibilities. This can be 
caused by the presence of repetition of the same base 
in the sequence. Base repetition can also cause breath-
ing of the primer [32]. These factors can reduce primer 
specificity and allow mispriming. However, the maxi-
mum amplicon result on FastPCR tells us that all the 
designs were able to fully bind to the template and 
produce products. This indicates that these designs 
yielded good results. The use of longer primers is one 
of the things that can be done to reduce the possibility 
of mispriming [30, 32]. We suggest these primers only 
be used to identify the source of the phytase gene. The 
primer usability to produce phytase should be directly 
tested first. Despite the limitation of the result, this 
study is an initial and important step to produce 
phytase using genetic and protein engineering in its 
implementation.

To summarize, as a result of the bioinformatics study it 
was found that the A. niger phytase has a stable protein 
structure. There are 14 A. niger phytases that have iden-
tities above 95%. A. niger 110. M94550.1 is the closest 
strain to the PDB template. Most of the A. niger phytase 
sequences are well conserved. The phytase gene source 
candidates obtained were A. niger 110.M94550.1, which 
was the only phytase that did not have mutations against 
the PDB template, and A. niger 48.2.BCMY01000003.1 
and 92.JQ654450.1 was the best representative of the 
gene source group that had certain characteristics. 
Primer design in this study produced the best primer 
set with a forward primer length of 19 bp and a reverse 
primer with a length of 24  bp with 1404  bp amplicons. 
The produced primer designs were able to fully bind to 
the template and, however, still show some possibility of 
mispriming so it can only be used to identify the source 
of the phytase gene.
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Conclusions
Phytase A. niger has a good characteristic with sta-
ble protein and high identity. However, the resulting 
primer design still shows the possibility of mispriming. 
This indicates the high potential for further develop-
ment, especially the production of phytase enzymes 
from A. niger as a feed additive using genetic engineer-
ing in an effort to develop the quality of animal feed 
in Indonesia. Therefore, this study needs to be studied 
further so that the potential can be explored and uti-
lized optimally.
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