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Abstract 

This article provides an overview of microbial host selection, synthetic biology, genome annotation, metabolic 
modeling, and computational methods for predicting gene essentiality for developing a microbial chassis. This article 
focuses on lactic acid bacteria (LAB) as a microbial chassis and strategies for genome annotation of the LAB genome. 
As a case study, Lactococcus lactis is chosen based on its well-established therapeutic applications such as probiotics 
and oral vaccine development. In this article, we have delineated the strategies for genome annotations of lactic acid 
bacteria. These strategies also provide insights into streamlining genome reduction without compromising the func-
tionality of the chassis and the potential for minimal genome chassis development. These insights underscore 
the potential for the development of efficient and sustainable synthetic biology systems using streamlined microbial 
chassis with minimal genomes.
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Background
Synthetic biology, precision medicine, and nanotechnol-
ogy are the three emerging research areas that can be 
applied as converging fields across various industrial sec-
tors. Synthetic biology is described as the design of new 
biological parts and the (re-)design of existing biologi-
cal systems for functional applications. Some synthetic 
biology applications include the development of syn-
thetic microbes as chassis for recombinant therapeutic 

production and vaccine development. Microbial chassis 
are versatile platforms where various bacteria are engi-
neered with genetic components for specific function-
alities and address unmet application needs. Synthetic 
biology, entailing the design and manipulation of bio-
logical systems, assumes paramount importance in bio-
engineering and in silico biology. Computational tools 
for predicting essential genes and facilitating genome 
reduction are crucial, offering advantages such as sim-
plified metabolism, improved production, and ease of 
manipulation. Genome annotation is discussed, focus-
ing on identifying and labeling functional elements 
in a genome sequence. The generation of synthetic 
microbes or otherwise called microbial chassis requires 
the design of minimal genomes that are facilitated 
through genome-scale metabolic (GSM) models and 
are critical for chassis development [70]. Furthermore, 
genome-scale metabolic (GSM) models play a vital role 
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in understanding metabolic capabilities, resource alloca-
tion, and adaptation in microbial chassis.

The advantages of chassis with minimal genome have 
been reported to reduce organism’s complexity by allow-
ing metabolic modeling and functional predictions with 
higher agility [38]. Improved genome stability has been 
demonstrated in genome-reduced Streptomyces chat-
tanoogesis and E. coli strains by deleting biosynthetic 
clusters and error-prone DNA polymerase [12, 18]. 
Another major advantage is that microbes with reduced 
genomes require lower bioenergy and this has been dem-
onstrated with the 6.9% reduction of the genome of Lac-
tococcus lactis N8 by deleting prophages and genomic 
islands, resulting in a shortened generation time by 17% 
[55]. Other benefits of genome-reduced strains include 
increased production of desired products, improved 
transformation efficiency, and ease of genetic manipu-
lation [12]. Finally, genome-reduced strains have the 
potential to be used for downstream applications such 
as expressing heterologous genes and producing bio-
molecules using tailored metabolic pathways [38] due 
to improved growth characteristics, more straightfor-
ward metabolism, and fewer functions being performed 
within the cell of genome reduced strains. This study out-
lines computational tools for predicting essential genes 
and designing genomic deletions to facilitate genome 
reduction. This study has demonstrated the application 
of computational synthetic biology using L. lactis as an 
example of microbial chassis with potential applications 
in vaccine development.

Microbial chassis
Choosing the right microbe as a microbial chassis to re-
engineer is critical for synthetic biology-driven applica-
tions. Engineering of bacterial chassis is considered the 
most sought-after versatile platform due to robustness, 
smaller genome size, and simple transcriptional and 
translational control. Several microbes like Mollicutes, 
Pseudomonas, Escherichia coli (E. coli), Comamonas 
testosteroni, and Bacillus subtilis (B. subtilis) have been 
tailored as microbial chassis. Mollicutes chassis which 
are characterized by their absence of cell walls offer 
insights into the fundamental boundaries of cell sur-
vival and division [23]. Pseudomonas chassis excels in 
metabolizing aromatic compounds, enhancing heter-
ologous gene expression. Large-scale genomic deletions 
in Pseudomonas putida chassis yield cells with robust 
growth [39, 40]. Similarly, E. coli chassis with deleted 
insertion sequences and auxotrophic phenotypes 
exhibit improved growth fitness [27]. Comamonas tes-
tosteroni harnesses its natural pollutant-degrading 
capabilities, making it a promising bioremediation 
chassis [1]. B. subtilis chassis, including delta6, MG1M, 

and MGB874, are known for their capacity to enhance 
extracellular protein productivity. Additionally, gram-
positive bacteria, like B. subtilis, are favored enzyme 
producers due to their low immunogenicity and lim-
ited extracellular protease production [4, 44, 72]. 
Furthermore, yeast chassis cells display temperature-
sensitive attributes, influencing ethanol and glycerol 
yields [45]. The choice of microbial chassis depends 
on specific applications targeted and also requires full 
genome annotation of the chassis in order to effectively 
engineer thereby highlighting the significance of host 
genome annotation.

Genome annotation
Genome annotation identifies functional elements of 
a genome sequence, indicating its significance. Anno-
tating a genome entails following these steps: identify-
ing genes (including protein-encoding genes and some 
RNA-encoding genes), predicting the functions of the 
identified genes, creating metabolic reconstructions 
and connecting them to genes, labeling phage inser-
tion sequences and transposons, predicting frameshifts 
and pseudogenes, and identifying regulatory sites and 
operons, ultimately creating a list of regulons [51]. 
Regulons are a group of genes or operons that are 
upregulated or downregulated as a unit by the same 
protein in response to the same signal. Several genome 
annotation tools have been developed. These annota-
tion tools may be automated or manual. Automated 
gene-annotation tools are often used because of the 
faster annotation and ease of use. However, it is highly 
recommended that beginners select automatic and 
semi-automatic annotation methods [31]. Moreover, 
automatic annotation algorithms, frequently based on 
orthologs from distantly related model organisms, can-
not yet correctly identify all genes within a genome 
due to confidence and reliability of outcomes as results 
from different servers or databases are often dissimilar; 
obtaining accurate gene sets and model manual anno-
tation is often required [21]. Several pipelines for the 
annotation of genomes have been developed; examples 
are in Table  1. The gene or protein sequences identi-
fied by structural annotation describing the gene struc-
ture (e.g., introns, exons, coding sequences, and start 
and end coordinates) are linked to biological data in a 
process known as functional annotation, which usually 
begins with gene identification or gene calling. The dif-
ferent tools for functional annotation are summarized 
in Table  2. With many genomes sequenced, computa-
tional annotation approaches to characterize genes and 
proteins from their sequences are essential for design-
ing genome deletions.
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Table 1  Genome annotation pipelines

Pipeline name Details Source URL

PGAP An automatic prokaryotic genome annotation pipeline, 
which is a set of computational tools and algorithms 
that are used to predict the presence and location 
of genes in the genome of a prokaryotic organism

 [63] https://​www.​ncbi.​nlm.​nih.​gov/​genome/​annot​ation_​
prok/

Prokka v1.14.6 A software tool for rapidly annotating genomes, which 
uses external feature prediction tools like RNAmmer 
and Prodigal to identify the coordinates of genomic 
features within contigs

[61] https://​github.​com/​tseem​ann/​prokka

RAST A fully automated pipeline for annotating bacterial 
and archaeal genomes

[10] https://​rast.​nmpdr.​org/

MicrobeAnnotator A tool that predicts all types of prokaryotic genes 
from a single or a set of anonymous genomic sequences 
of varying lengths. This tool is commonly used 
in the analysis of prokaryotic genomes

[58] https://​github.​com/​cruiz​perez/​Micro​beAnn​otator

EggNOG-mapper v2.1.9 A tool for automatically annotating the function 
of genes based on precomputed orthology assignments

[13] http://​eggnog-​mapper.​embl.​de/

DRAM A tool that uses databases like KEGG and PFAM to organ-
ize microbial genomic information into a catalog 
of microbial traits

[62] https://​github.​com/​Wrigh​tonLa​bCSU/​DRAM

DFAST A pipeline that supports genome submission 
to the public database DNA Data Bank of Japan (DDBJ) 
using the GHOSTX algorithm

[67] https://​dfast.​ddbj.​nig.​ac.​jp/

GenSAS An online pipeline that provides structural and func-
tional annotations of genomic sequences

[28] https://​www.​gensas.​org/

BlastKOALA A tool that carries out automated annotation of fully 
sequenced genomes by using KEGG’s internal annota-
tion tool, KOALA, to assign K numbers to KEGG genes 
using SSEARCH computation

[33] https://​www.​kegg.​jp/​blast​koala/

Table 2   Functional annotation tools that can be used in microbial genome annotation

Tool Description Source

(Meta)GeneMark A webpage that provides access to gene prediction in metagenomes [24]

(Meta)Prodigal Gene prediction software that is used to identify protein-coding genes in prokaryotic genomes [29]

MetaGeneAnnotator Predicts all kinds of prokaryotic genes from a single or a set of anonymous genomic sequences having a variety 
of lengths

[47]

CDD Comprises protein domains conserved throughout molecular evolution [41]

ChEBI The CHEBI database contains manually curated data on chemical entities [26]

GO FEAT A web-based functional annotation tool for genomic and transcriptomic data [5]

GO The Gene Ontology database provides a standardized vocabulary for describing gene function [2, 9]

KEGG Links genomic data and higher-order functional information [32]

Rhea Rhea is a database that contains functional annotations for enzymes and descriptions of metabolic pathways. The 
annotations in Rhea are based on expert-curated, non-redundant information on biochemical reactions

[43]

InterPro InterPro provides functional analysis of proteins by classifying them into families and predicting domains and impor-
tant sites

[53]

NCBI Blast BLAST is a program that identifies regions of similarity between sequences [30]

SEED The SEED database provides genome annotations across thousands of genomes [52]

UniProt A freely accessible resource on protein sequences and functional annotation [11]

RefSeq RefSeq provides a well-annotated set of sequences, including genomic DNA, transcripts, and proteins [48]

FunMappOne FunMappOne is a tool for functional analysis and visualization of gene lists [60]

g:Profiler Web server for functional enrichment analysis and additional information mining [37]

GAEV A tool that was developed for the construction of complete sets of molecular pathways for non-model organisms 
using KEGG gene function annotations

[73]

GOPlot GOPlot is an R package for the functional analysis of gene lists [69]

https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
https://github.com/tseemann/prokka
https://rast.nmpdr.org/
https://github.com/cruizperez/MicrobeAnnotator
http://eggnog-mapper.embl.de/
https://github.com/WrightonLabCSU/DRAM
https://dfast.ddbj.nig.ac.jp/
https://www.gensas.org/
https://www.kegg.jp/blastkoala/
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Metabolic modeling
The development of microbial chassis, mainly focus-
ing on LAB (lactic acid bacteria), is significantly pro-
pelled by genome-scale metabolic (GSM) models and 
system biology methodologies. GSM models employ 
constraints-based modeling, a widely adopted compu-
tational method, to map the metabolic pathways and 
predict phenotypic behavior. Initially applied in the 
food industry to enhance target product production, 
GSM models have expanded their utility to system-
wide therapeutic targeting for infectious microorgan-
isms and malignancies [3, 15]. Recent advancements, 
exemplified by creating the iCN1361 GSM model for 
Cupriavidus necator H16, demonstrate the integration 
of omics data and network visualization to improve 
model applications [54]. Evaluating how well GSM 
models predict metabolic phenotypes involves con-
trasting model results with experimental data and sub-
jecting models to in silico simulations under various 
growth conditions [42]. These GSM models are cru-
cial in understanding a microbial chassis’s metabolic 
capabilities, predicting metabolic fluxes, and provid-
ing insights into resource allocations and adaptation to 
changing conditions [59]. Moreover, in genome reduc-
tion efforts, the models may serve as input alongside 
essentiality and gene location data [70]. Finally, Fig.  1 
illustrates the model-guided approach for designing 
microbial chassis integrated into the synthetic biology 
Design-Build-Test-Learn (DBTL) cycle. This approach 

utilizes metabolic models and a minimal synthetic 
genome to develop a microbial chassis.

Lactic acid bacteria (LAB) as a chosen chassis
Lactic acid bacteria (LAB) have been investigated for 
their potential use in vaccine development due to their 
ability to induce a strong immune response. For example, 
Lactococcus lactis, has been modified to deliver antigens 
and stimulate an immune response in animal models. A 
recent study explored the expression and secretion of 
human interleukin-22 (hIL-22) by Lactobacillus reuteri 
(L. reuteri). The results showed that hIL-22 expression 
and secretion resulted in a growth defect in L. reuteri 
and cleavage of most of the secreted hIL-22, although the 
reason for this is unclear. The study found that changing 
the signal peptide improved hIL-22 secretion and showed 
promise for the active hIL-22 on the human intestinal 
epithelium in  vivo, as it was able to stimulate the pro-
duction of the antimicrobial peptide Reg3α in human 
intestinal enteroids. LAB have the potential as a vaccine 
delivery vehicle due to their ability to induce a strong 
immune response [50]. Synthetic biology tools can be uti-
lized to enhance the properties of LAB for vaccine use, 
but challenges such as antigen stability and elicitation of 
an unwarranted immune response must be addressed. 
The recent study of hIL-22 expression and secretion by L. 
reuteri showed promising results, but further research is 
needed to fully understand the implications and potential 
limitations.

Fig. 1  Illustration of the model-guided approach for designing microbial chassis integrated into the synthetic biology design-build-test-learn 
(DBTL) cycle. This approach requires and utilizes metabolic models, and a minimal synthetic genome to develop a microbial chassis. Illustration 
created with BioRender



Page 5 of 9Hamese et al. Journal of Genetic Engineering and Biotechnology          (2023) 21:156 	

Workflow for the design to reduce microbial genome 
as a chassis
Step 1: Choosing lactic acid bacteria (LAB) as host chassis
Lactic acid bacteria (LAB), including genera like Bifi-
dobacterium, Lactobacillus, Lactococcus, Leuconostoc, 
and Streptococcus, play a crucial role as microbial chas-
sis hosts. Lactic acid bacteria (LAB) are considered safe 
and versatile microbial chassis hosts and are widely used 
in ingredient production. In recent years, LAB have 
gained prominence as live delivery vehicles for therapeu-
tic agents, including vaccines, cytokines, enzymes, and 
allergens. They possess unique attributes such as safety, 
non-colonizing behavior, and easy elimination from the 
human body, making them valuable in therapeutic appli-
cations [22]. LAB’s potential in vaccine development is 
notable, given their ability to induce a robust immune 
response. Synthetic biology tools optimize LAB’s abil-
ity to produce, deliver, and express antigens, enhancing 
their potential as vaccine vectors. However, antigen sta-
bility and immune response elicitation must be addressed 
[50, 57]. Their safety profile, versatility, and potential 
for immune response induction make them invaluable 
in developing therapeutic agents and vaccine delivery 
systems.

Step 2: Testing the fitness of Lactococcus lactis as hosts
Lactococcus lactis is a mesophilic, Gram-positive, non-
motile, non-spore-forming, facultative anaerobe, previ-
ously Streptococcus lactis. It has been used for centuries 
in producing fermented food products, including cheese 
and yogurt. It is considered heterofermentative because it 
produces (S)-lactate as its primary fermentation product 
and contains genes for enzyme 6-phosphofructokinase 
(pfkA and pfkB). However, it can have heterofermen-
tative metabolism due to its ability to produce diacetyl, 
(S)-acetoin, and acetaldehyde, as well as (S)-lactate. Such 
characteristics made L. lactis a microorganism of indus-
trial importance. Metabolic efforts of this bacterium have 
also led to the production of B vitamins (folate and ribo-
flavin), biofuels (ethanol), and therapeutics [65]. Due to 
its industrial importance, L. lactis has been categorized 
as GRAS (generally recognized as safe) by the Food and 
Drug Administration (FDA).

Step 3: Predicting gene essentiality
Gene essentiality studies are often performed to deter-
mine which genes are essential before reducing an organ-
ism’s genome. Previous gene essentiality studies involved 
comparative genomics in search of homologs and paral-
ogs among closely related species [46]⁠ or systemic inac-
tivation of single individual genes [8, 36]⁠. Experimentally 
or computationally determined essential gene sets may 
be deposited into available databases of essential genomic 

regions. Experimentally determined essential gene sets 
may be deposited into the following databases: DEG 
(Database of Essential Genes) 15, OGEE (Online GEne 
Essentiality), and EGGS (Essential Genes on Genome-
Scale) whereas pDEG, NetGenes, and ePath are predicted 
essential gene set databases. The advantages of incor-
porating computational tools to predict essential genes 
include low cost and time efficiency. A few algorithms 
(a series of steps that attempt to solve a problem) have 
been developed to identify those regions in the genome 
that may be eliminated. Algorithms that have been devel-
oped to identify essential genes include DELEAT (DELe-
tion design by Essentiality Analysis Tool) and Geptop 
2.0 [64, 71]. Geptop 2.0 is simple to use, with an inter-
face to input DNA or protein sequences and receive the 
predicted essentiality with probabilities of genes or pro-
teins. However, it can only be used with fully sequenced 
organisms. Essential gene databases and computational 
programs will continue to be utilized to predict essential 
genes, facilitating the design of genomic deletions [6, 7, 
14, 17, 32, 34, 66].

Step 4: Performing enrichment analysis
Once potential genes of interest, including gene essen-
tiality predictions, are identified through a large-scale 
screening, the subsequent challenge is discerning false 
positives and negatives within these predictions. Inte-
grating gene annotations with the genes of interest is vital 
to uncovering and evaluating enriched functions of inter-
est. Gene set enrichment analysis is a valuable method 
for identifying functional classes overrepresented within 
sets of genes or proteins. Tools such as STRING-db 
[66] and FUNAGE-Pro [19] play crucial roles in anno-
tating biological functions from gene sets generated 
through analyses of differential gene or protein expres-
sion. The primary data sources for these tools are the 
complete bacterial genomes housed in the NCBI Ref-
Seq and Genbank databases [16]. The identified protein 
sequences are mapped against the reviewed and manu-
ally curated prokaryote database embedded in UniProt 
[11]. Functional classes like GO, KEGG, InterPro, and 
COG can be assigned to each protein, utilizing the Uni-
Prot protein annotation. The statistical method for the 
gene set enrichment analysis is “hypergeometric testing,” 
employed to identify overrepresented class IDs [20]. This 
statistical test relies on four key parameters: population 
size (total annotated genes in the genome), population 
identified as successful (genes with significant differen-
tial expression), sample size (genes in a class-ID), and 
sample identified as successful (significant values in the 
class-ID). Additionally, we apply a Benjamini–Hochberg 
multiple-testing correction to compute the final P value, 
which facilitates the development of ranking scores for 
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visualization purposes, revealing enrichment patterns 
within the gene sets under investigation.

Step 5: Computational design of genome reduction
As more is learned about bacterial genomes, deciding 
which genes to remove and how to remove those genes 
becomes increasingly complex. A few computational 
programs have been developed to assist in the deletion 
selection and genome design. Moreover, there needs to 
be more ability to analyze and evaluate genomic designs 
and an overwhelming number of genome configura-
tions, even for bacteria with small genomes. In genome 
minimization, two main approaches are used: the top-
down approach and the bottom-up approach. The top-
down approach involves deleting non-essential genomic 
regions from an existing genome until the reduced 
genome supports desired growth yield and rate [68, 70].

On the other hand, the bottom-up approach entails 
designing and building an artificially synthesized genome 
from scratch using enzymatic assembly [25],K. [35]. 
Moreover, Fig.  2 compares the two approaches. The 
top-down approach is primarily used compared to the 
bottom-up approach due to the cheaper cost and relative 

ease of the underlying procedures associated with the 
top-down genome reduction strategy (K. [35]. Both 
approaches are essential for advancing our understand-
ing of the genetic basis of life and for developing efficient 
and sustainable biotechnological systems such as micro-
bial chassis.

Step 6: Gene circuit design
The availability of gene essentiality data makes it plausi-
ble to achieve genome minimization using the bottom-
up or top-down approaches ⁠. In addition to making gene 
essentiality predictions, MinGenome and DELEAT 
computer programs may further be utilized for the in 
silico top-down reduction of bacterial genomes, with 
the ability to design large genomic deletions to mini-
mize the organism’s genome [64, 70]. In chassis devel-
opment, gene circuits are pivotal in controlling gene 
expression levels and implementing feedback mecha-
nisms to enhance yields and optimize cell populations. 
The construction of genetic circuits involves assembling 
well-characterized biological parts essential for achiev-
ing the desired expression levels within a cellular chas-
sis. Fundamental biological parts used in genetic circuit 

Fig. 2  Illustration of the two different genome minimization strategies. A The top-down genome minimization approach. DELEAT-v0.1 
and MinGenome are examples of tools to design minimal genomes using the top-down strategy. B The bottom-up genome minimization 
approach, where well-characterized, reliable, and context-independent biological parts are constructed into a minimal genome
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design include transcriptional switches, functional 
non-coding RNAs like riboswitches, ribozymes, and 
aptamers, as well as CRISPR-based genetic switches 
and toggle switches. Promoters, critical in controlling 
gene expression, can be combined and regulated to cre-
ate internal logic circuits, enabling the engineering of 
complex microbial behaviors. Additionally, promoters 
can be combined with ribosome binding sites (RBS) to 
fine-tune gene expression levels [49]. Toggle switches, 
acting as memory devices, determine when the chas-
sis will produce specific molecules, such as therapeutic 
compounds. Secretion tags are often added to the poly-
peptide chains to ensure that the therapeutic molecules 
produced do not harm the producing cells. CRISPR-
based switches, which can repress gene expression, 
have been developed, although they may impact the 
growth of the microbial chassis [56].

Thus, gene circuit design is a crucial aspect of chas-
sis development, leveraging well-characterized biologi-
cal parts and sophisticated tools to engineer microbial 
behavior and optimize gene expression within a biologi-
cal chassis for various applications.

Conclusions
Herein, we reviewed the critical role of computational 
methods in obtaining a genome-reduced bacterial strain, 
focusing on the versatile and safe microbial chassis hosts, 
lactic acid bacteria (LAB), particularly L. lactis. LAB, due 
to their safety profile, non-colonizing behavior, and ease 
of elimination from the human body, are versatile chas-
sis hosts extensively utilized in ingredient production 
and emerging as live delivery vehicles for therapeutic 
agents, including vaccines. Computational tools play a 
pivotal role in predicting gene essentiality, aiding in the 
design of a streamlined genome. Machine learning tech-
niques, particularly deep neural networks, have shown 
promise in predicting essential genes, which may guide 
downstream genome reduction strategies. Furthermore, 
advancements in gene circuit design and metabolic mod-
eling significantly contribute to the engineering of micro-
bial behavior, optimizing gene expression for diverse 
applications.
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