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Abstract 

Background SMYD2 is a protein of the SET and MYND domain-containing family SMYD. It can methylate the lysine 
residue of various histone and nonhistone cancer-related proteins and plays a critical role in tumorigenesis. Although 
emerging evidence supports the association of SMYD2 in the progression of cancers, but its definitive effect is not yet 
clear. Therefore, further study of the gene in relation with cancer progression needs to be conducted. In the current 
study, investigators used TCGA data to determine the potential carcinogenic effect of SMYD2 in 11 cancer types. 
The transcriptional expression, survival rate, mutations, enriched pathways, and Gene Ontology of the SMYD2 
were explored using different bioinformatics tools and servers. In addition, we also examined the correlation 
between SMYD2 gene expression and immunocyte infiltration in multiple cancer types.

Results Findings revealed that higher expression of SMYD2 was significantly correlated with cancer incidents. In 
CESC and KIRC, the mRNA expression of SMYD2 was significantly correlated with overall survival (OS). In BRCA, KIRC, 
COAD, and HNSC, the mRNA expression of SMYD2 was significantly correlated with disease-free survival (DFS). We 
detected 15 missense, 4 truncating, 4 fusions, and 1 splice type of mutation. The expression of SMYD2 was signifi-
cantly correlated with tumor purity and immunocyte infiltration in six cancer types. The gene GNPAT was highly 
associated with SMYD2. Significant pathways and Gene Ontology (GO) terms for co-expressed genes were associated 
to various processes linked with cancer formation.

Conclusion Collectively, our data-driven results may provide reasonably comprehensive insights for understanding 
the carcinogenic effect of SMYD2. It suggests that SMYD2 might be used as a significant target for identifying new 
biomarkers for various human tumors.
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Background
Cancer has become a serious health burden which sur-
passed cardiovascular diseases as the second largest 
cause of death worldwide [1]. According to the latest 
press release by the WHO in 2020, there were 19.3 mil-
lion new cancer patients diagnosed, and approximately, 
10 million cancer deaths occurred globally [2]. The evo-
lutions in genetic and epigenetic parameters promote 
tumorigenesis. Differentially expressed genes linked to 
cancer patient survival could be exploited as diagnostic 
markers for early cancer detection [3, 4]. Therefore, can-
cer investigation, identification of related biomarkers, 
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and development of methods for active prevention are 
essential requirements for the early screening of cancer.

Protein methyltransferase (PMT) is a catalytic enzyme 
that helps in the transfer of the methyl group to its 
substrate with the help of methyl donor S-adenosyl-
L-methionine (SAM). It plays a significant role in the 
regulation of epigenetic mechanisms and is involved in 
the methylation of various substrates [5, 6]. PMTs play 
a crucial role in transcriptional events through histone 
methylation and nonhistone methylation at the position 
of arginine or lysine residues. Protein lysine methyltrans-
ferases (PKMT) are a type of PMT that helps to trans-
fer a methyl group to the lysine residue of the substrate 
protein. It has been described that overexpression of 
proteins from PKMTs was linked with different types of 
human cancers [7, 8].

SMYD2 is a protein from PKMTs implicated in tumo-
rigenesis and can influence gene transcription through 
lysine methylation [9]. Numerous studies have revealed 
the activity of SMYD2 methylation to nonhistone pro-
teins such as P53 and RB1 [10, 11]. The SMYD2-specific 
nonhistone substrates are significantly associated with 
the carcinogenicity [12, 13]. Numerous tumor-caus-
ing proteins, for example, P53 [14], heat shock protein 
(HSP90) [15], retinoblastoma (Rb) [16, 17], ERα [18], 
PTEN [19], PARP1 [20], and STAT3 [21] being methylate 
by SMYD2. Therefore, it has been evidenced that SMYD2 
is an onco-related protein that can affect the function of 
cancer suppressor proteins. The data analysis demon-
strated that higher expression of SMYD2 is present in a 
variety of human cancers, like breast, bladder, colorectal, 
cervical, esophageal, lymphoma, ovarian, head and neck, 
and pancreatic cancer [14, 16, 22].

In the present analysis, we systematically explored the 
SMYD2 expression and its clinical outcomes to evalu-
ate its potential marker for cancer treatment. Various 
expression and patient survival datasets available on 
several online platforms were used for this analysis. We 
measured multiple factors, such as the difference in gene 
expression, survival value, gene mutations, phosphoryla-
tion, methylation, immune infiltration, and functional 
enrichment analysis to explore the potential molecular 
mechanisms of the oncogenic role of SMYD2 on patho-
genesis. Collectivelly, we identified that SMYD2 was not 
only potential biomarker but also may be of promising 
therapeutic target for multiple cancers.

Methods
Gene expression analysis
Expression analysis of SMYD2 was performed by 
using two web servers TIMER2 (http:// timer. cistr ome. 
org/) [23] and GEPIA2 [24] (http:// gepia2. cancer- pku. 
cn/# analy sis). Both utilized the tumor and non-tumor 

expression data from The Cancer Genome Atlas (TCGA). 
Genotype-tissue expression (GTEx) data was used to 
perform the expression difference between the tumor tis-
sues and normal tissues using statistical method analysis 
of variance (ANOVA) with the help of GEPIA2. Param-
eters for the assessment method were under the setting 
of log2FC of 1, p-value of 0.01, and “Match TCGA nor-
mal and GTEx data.” Moreover, the violin plots for the 
SMYD2 expression level in diverse stages of pathology 
(stages I–V) of all TCGA tumors were also obtained via 
the GEPIA2 [24].  The log2 [TPM (Transcripts per mil-
lion) +1] transformed data were applied for the construc-
tion of violin plots.

Survival prognosis analysis
Kaplan–Meier (K-M) plots were calculated to perform 
the survival analysis of cancer patients in TCGA cancers 
with the help of the GEPIA2 server [24]. The median 
score was used as a cutoff to divide the high-expres-
sion and low-expression cohorts. Then, samples with 
expression level higher than 50% were considered high-
expression cohorts, and lower than 50% were considered 
low-expression cohort. With the help of K-M plots, we 
analyzed the overall survival (OS) and disease-free sur-
vival (DFS) for 11 cancer types. The  log-rank test also 
called Mentel-Cox test was utilized for hypothesis test 
and p-value < 0.05 was considered statistically significant 
for all survival analyses.  Additionally, the hazard ratio 
(HR) with 95% confidence intervals was also computed.

Promoter methylation analysis
The promoter methylation analysis in multiple cancer 
patients has been studied in TCGA dataset by using the 
UALCAN (http:// ualcan. path. uab. edu/ analy sis- prot. html) 
[25]. It provides the facilities to estimate the cancer-related 
multi-omics data and assists to analyze the expression of 
proteins present in the Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) as well as TGCA data. To generate 
the analysis results, default parameters were used. The sta-
tistical method Wilcoxon rank-sum test was used for the 
methylation differential analysis.

Genetic alteration analysis
The cBioPortal (https:// www. cbiop ortal. org/) has a large-
scale web resource for cancer research [26, 27]. This study 
is based on TCGA data, so genetic alteration was per-
formed by selecting the “TCGA Pan-Cancer Atlas Stud-
ies.” All TCGA tumors were examined for the frequency 
of alteration, type of mutations, and DNA copy number 
alterations by using 4617 samples. We also analyzed the 
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differences between TCGA cancer patients with and 
without SMYD2 mutations in terms of overall, disease-
free, disease-specific, and progression-free survival. To 
create the K-M graphs, the log rank of the p-value was 
utilized with the significant level of <0.05.

Immune cell infiltration analysis
By choosing the immune cells such as cancer-associated 
fibroblasts cell and CD8 + T cells, the TIMER2 web server 
[23] was performed the association analysis between 
immune cell infiltration and SMYD2 expression across 
all tumor types. Immune infiltration was estimated using 
a variety of methods such as CIBERSORT-ABS, TIMER, 
CIBERSORT, EPIC, QUANTISEQ, MCPCOUNTER, and 
XCELL. The partial correlation and p-values were cal-
culated by using the correlation test Spearman with the 
purity-adjustment parameter. The p-value < 0.05 was con-
sidered as statistically significant. The correlation output 
data was represented with the help of a scatter plot and 
heat maps.

SMYD2‑related gene enrichment analysis
Using the targeted data of normal and tumor tissues, the 
GEPIA2 server was utilized for finding the top 100 tar-
geted genes associated with SMYD2. In this study, Enri-
chr web (https:// maaya nlab. cloud/ Enric hr/) [28] was 
used for pathways and Gene Ontology (GO) analysis. 
Reactome 2022 and the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) 2021 databases were utilized to define 
the signaling pathways. The SMYD2-correlated genes 
were categorized into three processes such as biological 
processes, cellular components, and molecular functions 
using different GO terms. The Cox p-value < 0.05 was 
considered statistically significant. The q-value (adjusted 
p-value) was calculated using the Benjamini–Hochberg 
method. Top ten enriched terms for input genes were 
displayed on bar charts based on the − log10 (p-value).

Results
Analysis of gene expression data
To check the association of SMYD2 with cancers, the 
gene expression profile was analyzed in various normal 
and cancer types of tissues. The SMYD2 was overex-
pressed in most types of cancer (p < 0.001) as compared 
to the corresponding normal tissues (Fig. 1A). The X-axis 
shows the SMYD2 expression in log2 fold change values, 
whereas Y-axis shows the tissue types where SMYD2 
is expressed. Analysis of TCGA datasets by using the 
GEPIA2 database also showed similar SMYD2 expres-
sion in bladder carcinoma, colon adenocarcinoma, dif-
fuse large B-cell lymphoma, cervical squamous cell 

carcinoma, liver hepatocellular carcinoma, pancreatic 
adenocarcinoma, rectum adenocarcinoma, thymoma, 
uterine corpus endometrial carcinoma, skin cutane-
ous melanoma, and uterine carcinosarcoma (Fig.  1B). 
From here, we selected only the cancers reported with 
the overexpression of SMYD2 and associated with can-
cer progression. These cancer types are bladder, cervical, 
colon, breast, lymphoid, esophageal, liver, head and neck, 
kidney, ovarian, and pancreatic cancer.

We next used GEPIA2 to compare the expression dif-
ference of SMYD2 in the GTEx dataset as a control. 
Tumors and normal tissues of 11 cancer types, such as 
“breast invasive carcinoma (BRCA), bladder urothelial 
carcinoma (BLCA), colon adenocarcinoma (COAD), 
cervical squamous cell carcinoma, endocervical adeno-
carcinoma (CESC), lymphoid neoplasm diffuse large 
B-cell lymphoma (DLBC), head and neck squamous cell 
carcinoma (HNSC), esophageal carcinoma (ESCA), kid-
ney renal clear cell carcinoma (KIRC),”liver hepatocel-
lular carcinoma (LIHC), pancreatic adenocarcinoma 
(PAAD), and ovarian serous cystadenocarcinoma (OV), 
were considered for the evaluation of SMYD2 expression 
differences. The box plots were created to represent the 
expression of normal and tumor tissues. In comparison 
to normal tissues, all tumor types showed higher expres-
sion. The significant expression difference (p-value < 0.01) 
was observed in the BLCA, CESC, COAD, DLBC, and 
PAAD (Fig. 2).

Furthermore, we used to study the correlation between 
the cancer pathological stages (stages I–V) and SMYD2 
expression. The violin plots for the pathological stages 
of all 11 cancer types are shown in Fig. 3. The width of 
each violin corresponds to the density of data points 
at that particular stage, with wider violins indicating a 
higher data  density. The expression of SMYD2 varied 
more than six orders of magnitude in maximum cancer 
types. The height of each violin indicates the range of val-
ues observed for that stage. This analysis suggested that 
SMYD2 has a promoting role in the occurrence and pro-
gression of cancer.

Analysis of survival data
To explore the critical efficiency of SMYD2 in the sur-
vival of various cancer cases, we used GEPIA2 to evaluate 
survival data and establish an association between cancer 
patient survival and RNA expression SMYD2. The K-M 
plots for overall survival and disease-free survival analy-
sis for all types of cancer were analyzed. A high level of 
SMYD2 in CESC (HR 2.3, p = 0.00045) and a lower level 
of SMYD2 in KIRC (HR 0.49, p = 6E-06) were significantly 
correlated with the OS of cancer patients (Fig.  4). The 
lower level of SMYD2 in BRCA (HR 0.68, p = 0.046) and 
KIRC (HR 0.63, p = 0.013) and a higher level of SMYD2 in 

https://maayanlab.cloud/Enrichr/
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COAD (HR 2, p = 0.0061) and HNSC (HR 1.6, p = 0.008) 
were significantly correlated with DFS (Fig.  5). The sig-
nificantly correlated high level of SMYD2 expression indi-
cated that patients with higher SMYD2 expression tend to 
live longer than those with lower SMYD2 expression, vice 
versa.  The low SMYD2 expression group had a greater 
survival rate as compared to the higher expression group 
in maximum cancer types for both the OS and DFS.

Analysis of DNA methylation data
DNA methylation is an important epigenetic regula-
tor of gene expression [29, 30]. Multiple malignancies 
have been found to have distinct and abnormal hyper-
methylation of CpG-rich regions (called CpG islands) or 
whole-genome hypermethylation [31, 32]. Hence, we dis-
covered a possible correlation between SMYD2 expres-
sion and methylation in a range of cancers. The level of 

Fig. 1 The difference in SMYD2 expression between the normal tissues and tumor tissues for all cancers of TCGA. A SMYD2 expression levels were 
analyzed for all cancers available in TCGA. The expression level of the tumor tissue is shown with red color box, and the normal tissue expression 
is shown as a blue color box. The stars represent the statistical significance level (*p < 0.05; **p < 0.01; ***p < 0.001). B Gene expression profile 
of SMYD2 was analyzed in tumor tissue (shown as red line) and normal tissue (shown as green line) samples using GEPIA2. The cancer names 
with significantly expressed are marked with red, lower expressed are marked with green, and non-expressed are marked with black color
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DNA methylation is represented in terms of beta values, 
which range from 0 (non-methylated)  to 1  (fully meth-
ylated). The beta value towards one signifies the higher 
methylation level. In BRCA, CESC, COAD, ESCA, and 
KIRC cancers, the promoter methylation level was found 
higher. The reduced methylation level was observed in 
BLCA, HNSC, LIHC, and PAAD tumors compared to 
their counterparts of normal tissues in the UALCAN 
analysis using the TCGA dataset (Fig. 6).

Analysis of genetic alteration data
The genetic alteration analysis of SMYD2 in several can-
cers was performed using cBioPortal. The SMYD2 gene 
mutations were searched in 4617 cancer samples from 11 

different pan-cancer studies, including breast, cervical, 
bladder, colon, esophageal, kidney, head and neck, liver, 
lymphoid, pancreatic, and ovarian cancer. In SMYD2 433 
amino acid long sequence, a total of 24 different muta-
tions were detected, in which missense mutations (15 in 
number) are the most common form of genetic altera-
tion (Fig. 7A). Maximum alteration frequency of SMYD2 
(> 10%) seems in lymphoid cancer patients. The amplifi-
cation type of copy number alterations was the main type 
in the lymphoid, breast, and liver cancer cases (Fig. 7B) 
(Supplementary Table 1). The deletion type of mutation 
was detected in several cancer patients. Additionally, as 
seen in the TCGA dataset, amplification and gain were 
more common (Fig.  7C). Moreover, the possible link 

Fig. 2 The box plot shows the SMYD2 expression in different cancers. The expression of SMYD2 in all cancer tissues was compared 
to the equivalent normal tissues using the GTEx as a control database. The expression of SMYD2 in the tumor tissues is shown in different colors, 
while corresponding normal tissues are shown in gray color. The line within the box represents the median, and the outliers are plotted as individual 
points. The statistically significant difference (p < 0.01) was marked with a red color asterisk (*)
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between genetic variants of SMYD2 and survival prog-
nosis across all TCGA cancer was also investigated. The 
survival analysis in comparison to SMYD2 with and 
without alteration was analyzed in disease-specific, over-
all, progression-free, and disease-free survival (Fig.  7D). 
The maximum survival difference was observed in dis-
ease-free survival analysis.

Analysis of immune‑infiltration data
Tumor-infiltrating immune cells are a chief constituent 
of the tumor microenvironment, and they play a crucial 
role in cancer progression, invasion, and metastasis [33, 
34]. Cancer-related fibroblasts correlated to cancer in 
the stroma of the tumor microenvironment have been 
discovered to play a role in the functional regulation of 
immune cells infiltrating malignancies [35–37]. Here, we 
used various algorithms such as CIBERSORT, TIMER, 
XCELL, MCPCOUNTER, CIBERSORT-ABS, EPIC, and 
QUANTISEQ to study the correlation between immune 
cell infiltration and SMYD2 expression in multiple can-
cers types.

Analysis revealed that statistically significant posi-
tive correlation (p < 0.05 and Rho > 0) was detected 
between CD8 + T-cell and SMYD2 expression for 
BLCA (Rho = 0.208, p = 5.37E-05), BRCA (Rho = 0.115, 
p = 0.0002), DLBC (Rho = 0.340, p = 0.031), KIRC 
(Rho = 0.262, p = 1.12E-08), and LIHC (Rho = 0.129, 
p = 0.016). The statistically significant negative cor-
relation (p < 0.05 and Rho < 0) was observed between 
the expression of SMYD2 and immune infiltration of 
 CD8+ T cell in BRCA basal (Rho =  − 0.160, p = 0.034), 
CESC (Rho =  − 0.137, p = 0.023), COAD (Rho =  − 0.171, 
p = 0.004), ESCA (Rho =  − 0.287, p = 9.50E-05), HNSC 
(Rho =  − 0.220, p = 7.69E-07), and PAAD (Rho =  − 0.195, 
p = 0.010) cancers of TCGA based on most or at least 
one algorithm (Supplementary Table  2). Furthermore, 
for BLCA (Rho = 0.208, p = 5.37E-05), BRCA-LumA 
(Rho = 0.208, p = 5.37E-05), BRCA-LumB (Rho = 0.237, 
p = 0.0009), CESC (Rho = 0.217, p = 0.0002), ESCA 
(Rho = 0.449, p = 2.67E-10), HNSC (Rho = 0.162, 
p = 0.0002), HNSC-HPV − (Rho = 0.240, p = 1.08E-06), 
and LIHC, a statistically significant positive correlation 

Fig. 3 Violin plots representing the levels of SMYD2 expression between different pathological stages (stages I–V) based on the TCGA dataset 
by applying the log-scale as Log2 (TPM + 1). The height of the violin indicates the range of values observed for that stage. The central line 
inside each violin represents the median value for that stage. White dots denote median classification accuracies. The violin’s shape represents 
the probability density function of the data distribution
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was found between the infiltration value of cancer-
related fibroblasts and SMYD2 expression. The scatter 
plot for these tumors was created by using one algorithm 
as shown in Fig.  8. A statistically negative association 
was detected for DLBC (Rho =  − 0.336, p = 0.031), KIRC 
(Rho =  − 0.135, p = 0.004), and PAAD Rho =  − 0.200, 
p = 0.008) of TCGA tumors based on most or almost all 
algorithms (Supplementary Table 2).

Enrichment analysis of SMYD2‑related genes
To explore the SMYD2-related genes, GEPIA2 server 
was utilized to identify the first 100 correlated genes 
with SMYD2 by combining all TCGA tumor expres-
sion data (Supplementary Table  3). The highest correla-
tion was found in glyceronephosphate O-acyltransferase 
(GNPAT) (r = 0.42), insulin-induced gene 2 (INSIG2) 
(r = 0.41), and Egl-9 family hypoxia-inducible factor 1 
(EGLN1) (r = 0.40). Finally, we used the list of associated 

genes with SMYD2 in various cancers for an ontology-
level analysis to identify the putative signaling pathways.

The first ten pathways from REACTOME and their 
interrelated genes were associated with the activation of 
arylsulfatases, RAB geranylgeranylation, metabolism of 
protein, post-chaperonin tubulin folding pathway, metal 
ion SLC transporters, cargo concentration in the ER, 
protein folding, gamma carboxylation and hypusin for-
mation, post-translation protein modification, and gly-
cosphingolipid metabolism. All these pathways showed 
a significant correlation with SMYD2 (Fig. 9A). The top 
ten KEGG pathways are mainly associated with a HIF-1 
signaling pathway, glycolysis/gluconeogenesis, central 
carbon metabolism in cancer, thiamine metabolism, 
selenocompund metabolism, glycosaminoglycan degra-
dation, one carbon pool by folate, histidine metabolism, 
renin-angiotensin system, and beta-alanine metabolism 
(Fig.  9B). A significant association was observed in the 

Fig. 4 K-M plots show the relationship between the high expression group (color line) and low expression group (black line) of SMYD2 gene 
expression with the overall survival of patients in multiple cancers. The dotted lines show the minimum and maximum values of the survival 
average
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HIF-1 signaling pathway. Additionally, we also analyzed 
the GO terms for genes associated with SMYD2 to see 
their functions in biological processes, molecular func-
tions, and cellular components. The recommended GO 
features mainly were involved in mitochondrial transport 
and oxaloacetate metabolic process in the biological pro-
cesses category (Fig.  9C), guanosinediphosphate in the 
molecular function category (Fig.  9D), and an integral 
component of the mitochondrial membrane in the pro-
cess of a cellular component category (Fig. 9E). All signif-
icant terms involved in pathways and GO functions along 
with p-value and q-value (adjusted p-value) are shown in 
Supplementary Table 4.

Discussion
Cancer ranked as the second most prominent cause 
of global death that accounts for approximately 10 mil-
lion deaths in 2020 worldwide [2]. The main cause for a 

higher number of cancer deaths is poor prognosis and 
advanced disease [38, 39]. So, the identification of effec-
tive biomarkers would be beneficial for early-stage diag-
nosis of cancer patients and will also help improve the 
treatment efficacy. Additionally, the proposed biological 
regulatory entities will help in the prognosis of multiple 
human malignancies. SMYD2 is a protein that takes part 
in the epigenetic modifications of the tumor suppressor 
gene and affects tumor transcription regulation by pro-
moting nonhistone protein methylation [40]. Thus, it 
is important to explore how SMYD2 is associated with 
malignancies through common molecular mechanisms. 
Liu et  al. studied the correlation of proteins from the 
SMYD family with cancer patients [40]. When we per-
formed a literature review, we could not identify any inte-
grated multicenter SMYD2 cancer analysis. Therefore, in 
the present study, we executed a multi-omics analysis to 
better understand the role of SMYD2 in diverse cancers.

Fig. 5 K-M plots show the relationship between high (color) and low (black) SMYD2 gene expression with disease-free survival of patients 
with multiple cancers. The dotted lines show the minimum and maximum values of the survival average
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In this systematic bioinformatics investigation of 
public datasets, we examined the expression value of 
SMYD2 across the tumors present in TCGA. The over-
expression of SMYD2 was present in tumor tissues of 
all cancer types except a few compared to normal tis-
sues. Furthermore, the overexpression of SMYD2 was 
observed in TCGA tumor tissues when GTEx data was 
used as a control. We found higher SMYD2 mRNA 
expression in all studied cancers. Overexpression of 
SMYD2 has been observed in several types of cancer, 
including breast cancer, lung cancer, and hepatocellular 
carcinoma [22]. The analysis of survival prognosis for the 
SMYD2 gene proposed discrete conclusions for tumors. 
Here, the GEPIA2 program was used to perform a statis-
tical correlation between SMYD2 expressions and over-
all/disease-free survival rate of cancer patients. Results 
showed that a lower SMYD2 expression group has been 
significantly associated with a higher survival rate in the 
maximum type of cancer patients for both OS and DFS. 

The overexpression of the SMYD2 gene in tumor tissues 
was induced by a genetic mutation, CNAs, and epige-
netic control. Moreover, mutational analysis from TCGA 
data suggested that CNA amplification was the most 
common type of alteration. The maximum alterations 
(> 10%) for SMYD2 were observed in lymphoid cancer. 
Further, correlated genes with SMYD2 were examined, 
and the top 100 genes were taken for pathways and GO 
analysis. In the REACTOME pathway analysis, the top 
pathways were associated with carcinogenesis [41–44]. 
For example, the activation of arylsulfatases is often 
decreased in cancer cells, leading to an accumulation of 
sulfated glycosaminoflycans (GAGs) in the extracellular 
matrix (ECM). This altered ECM composition can pro-
mote tumor growth and invasion by altering cell adhe-
sion, migration, and signaling [45]. The abnormal RAB 
geranylgeranylation can be associated with cancer devel-
opment and progression [46]. Furthermore, a study has 
shown that the post-chaperonin pathway for tubulin 

Fig. 6 Promoter methylation level of SMYD2 gene in normal (blue) and tumor (red) tissues of various cancers. The level of promoter methylation 
is expressed as a box plot. The y-axis shows the DNA methylation level in terms of beta value
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folding is associated with cancer [47]. The KEGG path-
way analysis indicated a significant correlation with the 
HIF-1 signaling pathway involved in tumor progression 
and metastasis [48, 49]. The enriched GO terms involved 
in transport and metabolic process in the biological 
process category, guanosinediphosphate in molecular 
function category, and essential component of the mito-
chondrial membrane in the cellular component category 
were observed.

The present research shows the promising asso-
ciation of SMYD2 in multiple cancers through diverse 

publicly available bioinformatics tools and servers. 
Our integrated analysis shows that SMYD2 would be 
a potential biomarker for a wide range of cancers. The 
regulatory effect of SMYD2 on diverse cancers is differ-
ent, though further experimental studies are desired to 
understand the complete molecular analysis of SMYD2 
to identify its more effective biomarker role for cancer. 
Thus, SMYD2 can be used for the diagnosis of several 
cancers. Additionally, in  vivo and in  vitro research is 
necessary to clarify SMYD2 as a potential biomarker 
for cancer.

Fig. 7 Genetic alteration and mutation of SMYD2. a The lollipop diagram depicts the alteration types within the SMYD2 protein sequence (1–433 
AA). b Plot depicts genome alteration and alteration frequencies in the SMYD2 gene. c Correlation between copy number alteration of SMYD2 
and mRNA expression present in TCGA data. d Association between mutation status and various conditions of survival analysis
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Conclusion
In this comprehensive analysis, various bioinformat-
ics databases and tools were used to elicit the SMYD2 
expression, prognostics value, DNA methylation, 
mutation, CNAs, and correlated genes of SMYD2 in 

various human cancers. This comprehensive analy-
sis shows that SMYD2 is significantly associated with 
multiple cancers. Heterogeneous data in TCGA were 
analyzed using extensive statistical and computational 
procedures that allowed us to reveal novel promising 

Fig. 8 Investigation of correlation between immune cell infiltration of cancer-associated fibroblasts and SMYD2 expression in multiple cancer types
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parameters for each examined cancer type. Addition-
ally, our findings will give an enhanced understanding 
of the role of SMYD2 in the process of tumorigenesis 
and metastasis. The pan-cancer analysis provides a 
potential mechanism that suggested the expression of 
SMYD2 might modulate tumors. However, because 
these findings were based on data analysis, more 
experimental verification will be needed. In conclu-
sion, SMYD2 would be a possible biomarker and a 
significant drug target for the prevention and manage-
ment of human cancers.
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