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Abstract 

Background Asthma is a chronic and complex pulmonary condition that affects the airways. A total of 250,000 
asthma-related deaths are recorded annually and several proteins including chymase, spleen tyrosine kinase, 
and prostaglandin D2 receptor have been implicated in the pathophysiology of asthma. Different anti-inflammatory 
drugs have been developed for the treatment of asthma, particularly corticosteroids, but the associated adverse 
reactions cannot be overlooked. It is therefore of interest to identify and develop small molecule inhibitors of the inte-
gral proteins associated with asthma that have very little or no side effects. Herein, a molecular modeling approach 
was employed to screen the bioactive compounds in Chromolaena odorata and identify compounds with high bind-
ing affinity to the protein targets.

Results Five compounds were identified after rigorous and precise molecular screening namely (−)-epicatechin, 
chlorogenic acid, ombuine, quercetagetin, and quercetin 3-O-rutinoside. These compounds generally showed 
impressive binding to all the targets understudy. However, chlorogenic acid, quercetagetin, and quercetin 3-O-ruti-
noside showed better prospects in terms of triple-action inhibition. Further pulmonary and oral pharmacokinetics 
showed positive results for all the reported compounds. The generated pharmacophore model showed hydrogen 
bond donor, hydrogen bond acceptor, and aromatic rings as basic structural features required for triple action 
inhibition.

Conclusion These findings suggest that these compounds could be explored as triple-action inhibitors of the pro-
tein targets. They are, therefore, recommended for further analysis.
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Background
Asthma is an acute and complex airway disease 
described by hyperresponsive airways (AHR) and 
eosinophilic inflammation. Lung biopsy examination 
in bronchial asthma reported the presence of mast 
cells, eosinophils pulmonary infiltration, lymphocytes, 
and macrophages. Furthermore, morphological altera-
tion in asthmatic bronchi’s extracellular and cellular 
parts, including epithelial hypertrophy, subepithelial 
fibrosis, cell hyperplasia, thickening of the airway wall, 
and myofibroblast hyperplasia, are all termed airway 
remodeling [1, 2]. It is a global disease commonly found 
in developing countries with an increasing incidence. 
A total of 250,000 people have been associated with 
asthma-related deaths annually. There is a tendency 
that 400 million people will be affected globally by 2025 
[3, 4]. The use of corticosteroids, an anti-inflammatory 
drug to treat asthma, has posed various adverse effects 
on the health of individuals, including growth retarda-
tion in younger ones, inhibited hypothalamic-pituitary 
axis, and high infection threat [5, 6].

Spleen tyrosine kinase (Syk) is a non-receptor protein 
tyrosine kinase found in the cytoplasm that triggers vari-
eties of respiratory inflammatory responses by activating 
(immunoglobulin E) IgE [7], releasing eosinophil media-
tors, and producing eicosanoid and cytokine [8, 9]. Syk 
is activated when the SH2 tandem domains attached to 
FcεRIITAMs (immunoreceptor tyrosine-based activa-
tion motifs) phosphorylate and transform FcεRI signal-
ing in mast cells [10]. Activated Syk modulates numerous 
signal transduction molecules upstream and triggers 
asthma immune responses, such as protein kinase C 
(PKC), cytosolic phospholipase A2 (cPLA2), and nuclear 
factor kappa-B (NF-kB) [11]. As a result, Syk promotes 
immune-mediated diseases such as asthma and allergies. 
Inhibition of Syk activation change mast cell degranula-
tion and leukocyte immune response [12, 13] and reduce 
inflammation in vivo. However, because Syk is positioned 
upstream in the signaling cell cascade of several immu-
nological receptors, therapeutics that target Syk may be 
more effective. Hence, targeting Syk is a crucial target for 
asthma treatment.

Prostaglandin D2 (PGD2) is a key cyclooxygenase 
product generated mostly by mast cells; higher levels 
of PGD2 have been seen in asthmatics [14, 15]. PGD2 
effects were related to the activation of the prostaglan-
din D2 receptor (PD2), also termed CRTH2 (chemoat-
tractant receptor-homologous molecule expressed on 
Th2 cells), and a high level of thromboxane (TP) recep-
tor activities [16]. PGD2 signaling activates cytokine 
generation and chemokinesis migration in leukocytes, 
including T cells, basophils, eosinophils, and type 2 
innate lymphoid cells (ILC2s). The PGD2–CRTH2 

pathway enhances in vitro ILC2 migration and build-up 
in the lung in vivo, thus leading to the development of 
type 2 lung infection. ILC2 levels are elevated in asth-
matic airways and induce eosinophilia through type 2 
cytokine production [17]. A potential therapeutic tar-
get for different acute inflammatory airway disorders 
treatment related to ILC2 responses, such as allergic 
rhinitis, chronic obstructive pulmonary disease, and 
asthma, is the PGD2–CRTH2 pathway [18–22].

Chymase is a monomeric protease that cleaves various 
substrates such as fibronectin, pro-MMP-2, MMPs, pro-
MMP9, IL-13, IL-15, and IL-33 [23, 24]. When mast cells 
(MC), which play an essential role in inflammation con-
ditions including asthma, are activated, several inflam-
matory compounds such as growth factors, cytokines, 
histamine, and a large number of different MC-restricted 
proteases, like carboxypeptidase A3 (CPA3), chymase, 
and tryptase, are released into the extracellular space 
[25–27]. Chymase cleaves to different substrates and 
changes the modification of the extracellular matrix com-
pounds, such as chymase degrades fibronectin released 
from Human lung fibroblast (HLF) [23]. It induces pro-
MMP-2, produced by the fibroblast airway [28, 29]. Thus, 
chymase is involved in extracellular matrix remodeling 
[30] and also causes an effect on primary human airway 
fibroblasts and their morphologic features, thereby con-
tributing to inflammation [31]. It is crucial to develop 
strategies to inhibit chymase activity.

Chromolaena odorata, a perennial plant of the fam-
ily Asteraceae, is widely prevalent in many parts of the 
world. It is otherwise known as Siam weed [32]. Stud-
ies showed that the plant contains flavonoids, glyco-
sides, and saponins, which allow it to demonstrate a 
comprehensive series of pharmaceutical actions such 
as antidiabetic, anti-inflammatory, astringent, antima-
larial, and antifungal properties [33–35] by interfering 
with carbohydrate metabolism. The biological actions 
of flavonoids in the treatment of diseases have piqued 
the interest of researchers. C. odorata is a potent anti-
inflammatory agent because of its ability to hinder 
the inflammatory pathway, thus preventing chronic 
inflammation and inhibiting prostaglandin-mediated 
inflammation [36, 37]. To this end, we propose that the 
compounds of C. odorota may be active in the treat-
ment of asthma through their inhibitory interactions 
with chymase, spleen tyrosine kinase, and prosta-
glansin 2D receptor. As a result, the present research 
employed biomolecular simulation methods, including 
molecular docking, molecular mechanics generalized 
born surface area, absorption, distribution, metabo-
lism, excretion studies, and pharmacophore modeling, 
to predict the inhibitory activities of C. odorata bioac-
tive constituents in the management of asthma.
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Materials and methods
Ligands and protein targets
To identify potential triple-action inhibitors of chymase, 
spleen tyrosine kinase, and prostaglandin D2 receptor, 
the compounds of Chromolaena odorata were mined 
from PubChem in 2D sdf format [38]. Subsequently, 
the crystal structures of the chymase (PDB ID: 3SON), 
spleen tyrosine kinase (PDB ID: 4PV0), and prostaglan-
din D2 receptor (PDB ID: 6D26) were downloaded from 
the protein data bank (http:// www. rscb. org/) [39–41].

Ligand preparation
The bioactive compounds of Chromolaena odorata to be 
used in molecular docking were initially prepared using 
the LigPrep tool. This was done by generating their ioni-
zation states and tautomers at pH = 7.2 ± 0.2. and optimi-
zation employing the OPLS 2005 force field (Schrodinger 
release 2017).

Protein preparation and receptor grid generation
The protein structures were incorporated in Maestro 
and subsequently prepared using the protein prepara-
tion wizard. Missing side chains were added using prime, 
waters, and other bound moieties (non-standard ligands) 
were deleted, hydrogen positions were optimized, and 
restrained energy minimization was performed on the 
proteins. Furthermore, to guide the automated docking 
procedure, grid boxes were generated with respect to the 
position of the co-crystallized ligand of the proteins.

Molecular docking
The molecular docking procedure was carried out using 
the Glide script on Maestro 11.1 [42]. The compounds 
were docked into the previously prepared grid of the pro-
tein targets to identify compounds with potent inhibitory 
interactions with the proteins [43]. The results from the 
most rigorous screening (XP) were exported for further 
analysis. Also, the docked ligand-receptor complexes 
were exported and the amino acid interactions were visu-
alized using the BIOVIA discovery studio visualizer [44].

In addition to our primary molecular docking investiga-
tions for the specified targets, we conducted a compara-
tive study by including the co-crystalized ligands pertinent 
to each target, as well as three widely recognized standard 
inhibitors: chymostatin for chymase, cerdulatinib hydro-
chloride for spleen tyrosine kinase, and BI 671800 for the 
prostaglandin D2 receptor [45–47]. This extended analysis 
aimed to comprehensively assess and contrast the binding 
affinities and interactions of these compounds within the 
framework of our docking procedures.

Pharmacophore modeling
PHASE graphical user interface in Schrodinger’s suite 
was employed to generate information on the molecular 
orientation of vital functional groups that are predomi-
nantly involved in the characteristic binding of the top-
scoring ligands to the protein target [48].

Pharmacokinetic profiling
The absorption, distribution, metabolism, excretion, and 
toxicity (ADMET) as well as the drug-likeness of the top-
scoring compounds were analyzed using SwissAdme, 
Pro-Tox II, and Admetlab 2.0 online tools [49–51]. In 
addition to oral drug-likeness, pulmonary pharma-
cokinetic profiles were also studied. The pharmacoki-
netic descriptors analyzed include lipophilicity, water 
solubility, molecular weight, topological surface area, 
gastrointestinal absorption, pulmonary dissolution, per-
meability, volume distribution, blood-brain barrier per-
meation, P-glycoprotein substrate candidacy, inhibition 
of cytochrome P450 enzymes, plasma protein binding, 
carcinogenicity, LD50, hepatotoxicity, and clearance.

Results
The result of the molecular docking procedure for chy-
mase (Fig. 1) showed a robust binding affinity for querce-
tin 3-O-rutinoside (− 9.179 kcal/mol), quercetagetin 
(− 8.067 kcal/mol), and chlorogenic acid (− 8.755 kcal/
mol). Ombuine and (−)-epicatechin showed moderate 
binding affinities with docking scores of − 6.157 kcal/
mol and − 5.836 kcal/mol, respectively. Chlorogenic acid, 
quercetagetin, and quercetin 3-O-rutinoside exhibited 
notably superior docking scores in comparison to the co-
crystalized ligands. Remarkably, all the lead compounds 
demonstrated superior docking scores when evaluated 
against the standard compounds.

Similarly, quercetin 3-O-rutinoside had the highest 
binding affinity to spleen tyrosine kinase with a docking 
score of − 12.068 kcal/mol. (−)-Epicatechin, chlorogenic 
acid, ombuine, and quercetagetin also scored highly with 
docking scores of − 9.081 kcal/mol, − 7.517 kcal/mol, 
− 8.519 kcal/mol, and − 9.466 kcal/mol, respectively. 
Overall, all the reported compounds showed better pros-
pects than the co-crystallized ligand and the standard 
compound.

All the reported compounds ranked higher than the 
standard co-crystallized ligand of the prostaglandin D2 
receptor. Chlorogenic acid exhibited the highest bind-
ing affinity with a docking score of − 11.715 kcal/mol 
and quercetin 3-O-rutinoside also showed an impres-
sive binding with a docking score of − 10.318 kcal/mol. 
(−)-Epicatechin, ombuine, and quercetagetin had dock-
ing scores of − 9.318 kcal/mol, − 8.143 kcal/mol, and − 
9.419 kcal/mol, respectively, which are also considered 

http://www.rscb.org/
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good binding affinity to prostaglandin D2 receptor. How-
ever, the standard compound had a slightly higher dock-
ing score than ombulne.

The generated receptor-ligand poses of the docked 
complexes were studied to reveal the specific interac-
tions. Quercetin 3-O-rutinoside, the compound with the 
highest docking score against chymase, had interactions 
with  THR83,  LYS179,  LYS28,  SER182,  SER197, ALA 177, and 
TYR 198 (Fig.  2). Similarly, against Syk, specific contacts 
were made with GLU 452,  LEU453,  LEU377,  LYS458, ARG 
498,  ASN499,  ASP512, and  MET338 (Fig.  3). Also, chloro-
genic acid had interactions with  PHE111, ARG 170,  SER108, 
 HIS107,  CYS182, and ARG 175 when complexed with the 
ligand-binding site of the prostaglandin D2 receptor 
(Fig. 4).

The physicochemical properties of the lead compounds 
are presented in Table 1. The log P value, as predicted by 
Admetlab 2.0, which represents the lipophilicity of the 
compounds ranged from − 0.763 to 1.588 with quercetin 
3-O-rutinoside being the least lipophilic. The log S value 
which is a measure of water solubility ranged from − 
3.928 to − 1.198. Reported also are the molecular weight 
of the compounds, topological surface area, and the 
number of hydrogen bonds.

The absorption and distribution descriptors are 
reported in Table  2. The result showed high gastroin-
testinal absorption for (−)-epicatechin and ombuin. 

Also, (−)-epicatechin and quercetin 3-O-rutinoside 
were shown to be substrates of permeability glycopro-
tein. Notably, none of the compounds can permeate the 
blood-brain barrier. The volume distribution ranged 
from 0.351 to 0.754 with chlorogenic having the least 
distribution and quercetin 3-O-rutinoside having the 
highest distribution.

According to swissAdme predictions (Table 3), chlo-
rogenic acid, (−)-epicatechin, and quercetin 3-O-ruti-
noside are non-inhibitors of the essential CYP isoforms.

The toxicity predictions (Table  4) revealed no toxic 
action in the respiratory system and in the liver. Also, 
the clearance rate ranged from 1.349 to 17.911 with 
quercetin 3-O-rutinoside having the least clearance 
rate and (−)-epicatechin having the highest.

The oral drug-likeness predictions of the lead com-
pounds are shown in Table 5. (−)-Epicatechin, ombuin, 
and quercetegetin had a bioavailability score of 0.55. 
Chlorogenic acid returned a value of 0.11, and querce-
tin 3-O-rutinoside showed a value of 0.17

Discussion
In search of small molecule triple-action inhibitors of 
chymase, spleen tyrosine kinase, and prostaglandin D2 
receptor CRTH2, the compounds of Chromolaena odor-
ata were analyzed and docked against the ligand-binding 
sites of protein targets to reveal the individual binding 

Fig. 1 The docking scores of the lead compounds
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Fig. 2 The interactions of the lead compounds with chymase
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Fig. 3 The interactions of the lead compounds with spleen tyrosine kinase



Page 7 of 13Akinnusi et al. Journal of Genetic Engineering and Biotechnology          (2023) 21:113  

Fig. 4 The interactions of the lead compounds with Prostaglandin 2D receptor
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affinities to the targets. The result of the molecular dock-
ing procedure revealed different compounds with poten-
tial inhibitory action on these targets. The compounds 
were analyzed and five lead compounds with the most 
robust triple-action activity were selected and reported 
herein. Spleen tyrosine kinase (Syk) has been shown to 
play essential roles in inflammatory responses in aller-
gic asthma, and Syk inhibitors have previously evolved 

as part of a new anti-inflammatory strategy in treating 
asthma [3, 7, 52]. Therapeutic interventions that inhibit 
Syk may be more effective than treatments that focus on 
downstream targets [53]. Also, research has considered 
prostaglandin 2D receptor 2 as a predominant player in 
the propagation of asthma due to its role in initiating and 
amplifying the inflammatory response associated with 
the disease state. The receptor can be activated by both 

Table 1 Physicochemical properties of the top-scoring compounds

Compounds Molecular weight TPSA log P log S nHA nHD

(−)-Epicatechin 290.08 110.38 1.142 −2.99 6 5

Chlorogenic acid 354.1 164.75 −0.162 −1.198 9 6

Ombuin 330.07 109.36 3.194 −3.78 7 3

Quercetagetin 318.04 151.59 1.588 −3.536 8 6

Quercetin 3-O-rutinoside 610.15 269.43 −0.763 −3.928 16 10

Table 2 Absorption and distribution descriptors

Compounds GI absorption HIA P-gp substrate ppB VD (L/kg) BBB 
penetration

(−)-Epicatechin High HIA+ Yes 92.06% 0.661 No

Chlorogenic acid Low HIA− No 67.18% 0.351 No

Ombuin High HIA+ No 94.05% 0.718 No

Quercetagetin Low HIA+ No 95.28% 0.603 No

Quercetin 3-O-rutinoside Low HIA− Yes 83.81% 0.754 No

Table 3 Pharmacokinetic descriptors (CYP inhibition)

Compounds CYP1A2 inhibitor CYP2C19 inhibitor CYP2C9 inhibitor CYP2D6 inhibitor CYP3A4 
inhibitor

(−)-Epicatechin No No No No No

Chlorogenic acid No No No No No

Ombuin Yes No Yes Yes Yes

Quercetagetin Yes No No No Yes

Quercetin 3-O-rutinoside No No No No No

Table 4 Toxicity and excretion

Compounds CL T1/2 LD50 (mg/kg) Hepatotoxicity Carcinogenicity Respiratory 
toxicity

(−)-Epicatechin 17.911 0.853 10000 No No No

Chlorogenic acid 3.251 0.928 5000 No No No

Ombuin 4.929 0.843 5000 No No No

Quercetagetin 7.705 0.936 159 No Yes No

Quercetin 3-O-rutinoside 1.349 0.524 5000 No No No
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allergic and nonallergic agents, and several studies are 
of the opinion that antagonizing it is a good therapeutic 
intervention for asthma [54].

With respect to the intended triple activity, quercetin 
3-O-rutinoside, quercetagetin, and chlorogenic acid are 
considered to be the most suitable inhibitors as per the 
generated heat map (Fig.  2). Quercetin 3-O-rutinoside 
showed the most robust triple affinity to the protein 
targets. (−)-Epicatechin and ombuine had impressive 
affinities for spleen tyrosine kinase and prostaglandin 
D2 receptor but moderate binding affinities for chymase. 
This makes the compounds less suitable than quercetin 
3-O-rutinoside, quercetagetin, and chlorogenic acid. 
However, they can be explored as double-action inhibi-
tors of both spleen tyrosine kinase and prostaglandin D2 
receptor.

To identify optimizable ligand-protein interactions, 
the amino acid interactions of the lead compounds 
with the binding pockets of all the protein targets 
were analyzed. The specific interactions in these 
complexes are shown in Figs. 2, 3, and 4 for chymase, 
spleen tyrosine kinase, and prostaglandin D2 recep-
tor, respectively. Hydrogen bond is the most preva-
lent interaction observed, and this could be linked to 
the consideration that it is one of the most stabilizing 
and specific interactions in biological systems [55]. In 
addition to its role in the recognition of ligand-protein 
binding, hydrogen bond is also involved in the affin-
ity of ligands for protein [56]. π-stacking interactions 

were also observed in some of the interactions. The 
interaction has been shown to contribute immensely 
to ligand binding. It also plays a vital role in medici-
nal chemistry because it can be seen between aromatic 
rings; an automatic ring from the ligand and another 
from aromatic amino acid residues in the binding 
pocket of proteins [55, 57] Figs 5 and 6.

Pharmacophore model
Receptor-based pharmacophore hypothesis was devel-
oped from the complex formed by the binding of 
quercetin 3-O-rutinoside to the ligand-binding site 
of the targets. The specific details of the molecular 
arrangement of contributing functional groups that are 
involved in the specific recognition and characteristic 
binding of high-affinity compounds for the target can 
be obtained from the PHASE interface in Schrodinger’s 
suite [48].

The developed E-pharmacophore hypothesis from the 
binding of quercetin 3-O-rutinoside to the ligand-bind-
ing sites of the protein targets includes aromatic rings, 
H-bond acceptor, and H-bond donor interactions. Inter-
estingly, this hypothesis is employable in forming the 
basic structural architecture that is common to all poten-
tial triple inhibitors of chymase, spleen tyrosine kinase, 
and prostaglandin D2 receptor CRTH2. Similarly, a fun-
damental skeletal structure of compounds with precise 
angles and distance that will bind strongly to the binding 
pockets of the proteins.

Table 5 Druglikeness and bioavailability score

Compounds with (+) obey the corresponding rule while those with (−) do not

Compounds Lipinski rule Pfizer rule GSK rule Verber rule Bioavailability 
score

(−)-Epicatechin + + + + 0.55

Chlorogenic acid + + + − 0.11

Ombuin + + + + 0.55

Quercetagetin + + + − 0.55

Quercetin 3-O-rutinoside − + − − 0.17

Fig. 5 Heat map of the docking scores of top-scoring compounds
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Pharmacokinetic profiling
Pulmonary administration has in recent times been the 
subject of extensive exploration as a route for the treat-
ment of local lung diseases such as asthma [58]. How-
ever, long pulmonary exposure is critical to achieving 
the desired therapeutic effect. Lipophilicity and solu-
bility of compounds are the major contributors to the 
fast absorption and low pulmonary exposure of drugs. 
After being inhaled, hydrophilic drugs may rapidly dis-
solve in the fluid lining the lungs, diffuse through the 
lung epithelium, and move swiftly away from the lungs 
into systematic circulation through absorption [59]. 
Similarly, lipophilic drugs passively diffuse through the 
cells and induce faster absorption through the respira-
tory epithelium [60].

In this regard, quercetin 3-O-rutinoside is expected to 
have the highest pulmonary exposure due to its combina-
tion of lowest solubility (− 0.3928 log mol/L) and lowest 
lipophilicity (−0.763 log mol/L) (Table 1). Ombuine and 
quercetagetin also showed low solubility index with log 
S values − 3.78 log moL and − 3.536 log mol/L, respec-
tively, and would have a longer dissolution time than 
(−)-epicatechin (− 2.99 log mol/L) and chlorogenic acid 
(− 1.198 log mol/L). Based on these findings (per Admet-
lab), quercetin 3-O-rutinoside is considered the most 
suitable compound for local pulmonary administration 
due to its low pulmonary dissolution and permeability.

Considering the idea that a portion of an inhaled drug 
is deposited in the mouth and eventually swallowed and 

the fact that some asthma drugs are administered orally, 
it is therefore important to analyze the oral pharmacoki-
netics of these compounds. The swallowed portions of 
these compounds will have pharmacokinetic profiles sim-
ilar to oral drugs.

Absorption
The efficient absorption of oral drugs depends on different 
contributing factors. Lipophilicity is one of the descriptors 
of absorption. As opposed to the desired exposure in the 
lungs, an oral drug must have a sufficient level of lipophi-
licity to aid its movement across the intestine. The (−)-epi-
catechin, ombuine, and quercetagetin have an optimal 
level of lipophilicity with log P values of 1.142 log mol/L, 
3.194 log mol/L, and 1.588 log mol/L. Chlorogenic acid 
and quercetin 3-O-rutinoside have log P values slightly less 
than the optimal value (0 − 3 log mol/L) and will have a rel-
atively slower movement across the intestinal membrane 
[61–65]. The lipophilicity and intestinal absorption of the 
compounds follow the order ombuine > quercetagetin > 
(−)-epicatechin > chlorogenic acid > quercetin 3-O-ruti-
noside (Table 1). It is noteworthy that the log P value has 
an impact not only on membrane permeability but also on 
hydrophobic binding to macromolecules including target 
proteins, enzymes, and transport proteins [51].

Distribution
Volume distribution (VD) gives an insight into the actual 
amount of a drug in systemic circulation after absorption. 

Fig. 6 Pharmacophore models
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The VD values of all the compounds are within the opti-
mal range. Comparatively, quercetin 3-O-rutinoside 
showed the highest VD value (0.754 L/kg), while chloro-
genic acid returned the least value (0.351 L/kg) (Table 2). 
Notably, these two compounds showed a positive plasma 
protein binding (PPB) with values of 83.81% and 76.17%, 
respectively, while the other compounds returned values 
slightly higher than the optimal range (90%). Compounds 
with values higher than 90% may have a low therapeutic 
index. Interestingly, all the compounds would not perme-
ate the blood-brain barrier.

Metabolism
Bioactive active compounds in systematic circulation 
are transported to the liver where they undergo one or 
more reactions to increase their activity and make them 
easily excretable. Cytochrome P450 enzymes are pre-
dominantly involved in these reactions. (−)-Epicatechin, 
chlorogenic acid, and quercetin 3-O-rutinoside are non-
inhibitors of the analyzed CYP isoforms. Ombuine is 
predicted to be an inhibitor of 1A2, 2C9, 2D6, and 3A4 
isoforms, while quercetagetin would likely inhibit 1A2 
and 3A4 isoforms (Table 3). Cytochrome P450 enzymes 
are phase 1 reaction orchestrators, in cases where they 
are inhibited, toxic concentrations of drugs and other 
xenobiotics accumulate due to inefficient processing and 
clearance [66].

Excretion
The clearance and half-life are essential pharmacokinetic 
descriptors that define the excretion of drugs and they 
serve as important parameters in establishing drug dos-
age [51]. (−)-Epicatechin has a high clearance rate with 
a value of 17.911 ml/min/kg, and quercetagetin returned 
a moderate clearance value (7.705 ml/min/kg). However, 
chlorogenic acid, ombuine, and quercetin 3-O-rutinoside 
showed low clearance (3.251 ml/min/kg, 4.929 ml/min/
kg, and 1.349 ml/min/kg, respectively) (Table 4).

Toxicity
According to the Pro-tox II server, the toxicity predicted 
revealed that (−)-epicatechin is the least toxic with an 
LD50 value of 10,000 mg/kg, while quercetagetin is the 
most toxic of all the top-scoring compounds. Chlo-
rogenic, ombuine, and quercetin 3-O-rutinoside also 
showed a low toxicity profile (Table  5). Furthermore, 
none of the compounds is predicted to have a hepato-
toxic activity, and they are all shown to be non-toxicants 
of the respiratory system. This increases their suitability 
for local pulmonary administration. However, querc-
etagetin was predicted to have a predicted carcinogenic 
activity. Nevertheless, none of the compounds showed 
respiratory toxicity.

Drug-likeness
The drug-likeness and the bioavailability score of a com-
pound predict the likelihood of a compound being an oral 
drug. All but quercetin 3-O-rutinoside obeyed the Lipin-
ski rule of five and the GSK rule-based filter. Notably, 
all compounds obeyed the Pfizer rule. (−)-Epicatechin, 
ombuine, and quercetagetin had a bioavailability score of 
0.55. However, chlorogenic acid had a score of 0.11, and 
quercetin 3-O-rutinoside had a score of 0.17 (Table 5).

Conclusions
(−)-Epicatechin, chlorogenic acid, ombuine, quercetage-
tin, and quercetin 3-O-rutinoside were identified to have 
high binding affinity and inhibitory potential on chymase, 
spleen tyrosine kinase, and prostaglandin 2D receptor 
CRTH2. Although the identified compounds generally 
showed impressive binding to all the targets, querce-
tin 3-O-rutinoside is considered the most suitable drug 
candidate. Further, ADMET studies predicted that these 
compounds can be employed as oral drugs and could be 
aerosolized for local pulmonary administration. The cur-
rent findings suggest the reported compounds could be 
explored as triple-action inhibitors of the protein targets 
in the management of asthma. However, further corrobo-
rative analyses are recommended.
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