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Abstract 

Background The ongoing concern surrounding coronavirus disease 2019 (COVID-19) primarily stems from continuous  
mutations in the genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to the 
emergence of numerous variants. The receptor-binding domain (RBD) in the S1 subunit of the S protein of the virus 
plays a crucial role in recognizing the host’s angiotensin-converting enzyme 2 (hACE2) receptor and facilitating cell 
membrane fusion processes, making it a potential target for preventing viral entrance into cells. This research aimed 
to determine the potential of banana lectin (BanLec) proteins to inhibit SARS-CoV-2 attachment to host cells by inter-
acting with RBD through computational modeling.

Materials and methods The BanLecs were selected through a sequence analysis process. Subsequently, the genes 
encoding BanLec proteins were retrieved from the Banana Genome Hub database. The FGENESH online tool was then 
employed to predict protein sequences, while web-based tools were utilized to assess the physicochemical proper-
ties, allergenicity, and toxicity of BanLecs. The RBDs of SARS-CoV-2 were modeled using the SWISS-MODEL in the  
following step. Molecular docking procedures were conducted with the aid of ClusPro 2.0 and HDOCK web servers. 
The three-dimensional structures of the docked complexes were visualized using PyMOL. Finally, molecular dynamics  
simulations were performed to investigate and validate the interactions of the complexes exhibiting the highest 
interactions, facilitating the simulation of their dynamic properties.

Results The BanLec proteins were successfully modeled based on the RNA sequences from two species of banana 
(Musa sp.). Moreover, an amino acid modification in the BanLec protein was made to reduce its mitogenicity. Theoreti-
cal allergenicity and toxicity predictions were conducted on the BanLecs, which suggested they were likely non-
allergenic and contained no discernible toxic domains. Molecular docking analysis demonstrated that both altered 
and wild-type BanLecs exhibited strong affinity with the RBD of different SARS-CoV-2 variants. Further analysis of the 
molecular docking results showed that the BanLec proteins interacted with the active site of RBD, particularly the key 
amino acids residues responsible for RBD’s binding to hACE2. Molecular dynamics simulation indicated a stable inter-
action between the Omicron RBD and BanLec, maintaining a root-mean-square deviation (RMSD) of approximately 
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0.2 nm for a duration of up to 100 ns. The individual proteins also had stable structural conformations, and the com-
plex demonstrated a favorable binding-free energy (BFE) value.

Conclusions These results confirm that the BanLec protein is a promising candidate for developing a potential thera-
peutic agent for combating COVID-19. Furthermore, the results suggest the possibility of BanLec as a broad-spectrum 
antiviral agent and highlight the need for further studies to examine the protein’s safety and effectiveness as a potent 
antiviral agent.

Keywords Banana lectin, Antiviral, SARS-CoV-2, Molecular dynamics simulations

Background
The coronavirus disease 2019 (COVID-19) pandemic, 
which has lasted 3 years, has infected 765,222,932 peo-
ple worldwide and claimed 6,921,614 lives. Additionally, 
13,344,670,055 doses of vaccine had been administered 
to mitigate the impact of the disease (https:// covid 19. 
who. int/; accessed on 3rd May 2023). Originating in 
Wuhan, China, COVID-19 was declared a pandemic by 
the World Health Organization on March 11, 2020. The 
disease is caused by the highly contagious severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), a 
novel betacoronavirus belonging to the Coronaviridae 
family. This family also includes other members, such 
as SARS-CoV and MERS-CoV [1].

The rapid mutation of SARS-CoV-2 has made it the 
most dangerous virus globally, with the emergence new 
viral variants. While many mutations in the SARS-
CoV-2 genome are expected to be neutral, certain 
variations have been observed to alter viral function 
in terms of infectivity, illness severity, and host inter-
actions [2]. Of particular concern are variants capable 
of evading antibodies, which can reduce the efficacy 
of some vaccines [3]. SARS-CoV-2 is more suscepti-
ble to mutations as it is an RNA virus, and mutations 
arise due to errors during RNA replication in the virus 
replication process. This results in the accumulation of 
mutated sequences and the emergence of diverse vari-
ants. The significantly higher error rates during repli-
cation may even confer a fitness advantage, leading to 
increased virulence of newly mutated viruses [4].

Various measures have been implemented to combat 
SARS-CoV-2 infection and its associated symptoms, 
such as restrictions, lockdowns, and improved general 
hygiene practices, and global vaccine developments and 
distribution. Vaccines have been effective in reducing 
the severity of infection and hospitalization rates [5]; 
however, their efficacy may wane over time following 
the second dose [6]. Moreover, the emergence of more 
contagious variants underscores the need for more sus-
tainable and effective solutions. In addition to vaccina-
tion efforts, health professionals and researchers from 
diverse disciplines are working feverishly to develop an 
antidote for the disease.

Researchers are exploring repurposing antiviral drugs, 
such as lopinavir, ritonavir, nelfinavir, remdesivir, favi-
piravir, ribavirin, sofosbuvir, chloroquine, hydroxychlo-
roquine, and azithromycin, to target key SARS-CoV-2 
proteins and inhibit the virus [7, 8]. Ivermectin, an FDA-
approved antiparasitic drug, has shown in  vitro antivi-
ral activity against SARS-CoV-2, but requires further 
research to confirm its efficacy and safety for COVID-19 
treatment [9]. Gallinamide A and its analogues, derived 
from marine cyanobacteria, have demonstrated potent 
in vitro anti-SARS-CoV-2 activity by inhibiting cathepsin 
L, a host enzyme involved in viral entry [10]. Dual drug 
combinations, including antiviral agents, antibiotics, and 
hydroxychloroquine, have shown promising synergis-
tic antiviral effects in vitro against SARS-CoV-2 isolated 
from hospitalized patients in Indonesia [11]. These stud-
ies emphasize ongoing efforts to develop effective antivi-
ral medicines and phytochemicals to expand treatment 
options for COVID-19. Additionally, medicines derived 
from plants are also sought [12–16].

Molecular docking is a valuable in silico method used 
to predict potential interactions between molecules, 
allowing for the analysis of their properties and interac-
tions, including proteins [17]. In the context of a pan-
demic, developing therapeutic agents for SARS-CoV-2 
is challenging due to a lack of human resources and 
increased restrictions on public activities. This makes in 
silico methods of research, such as molecular docking, an 
appealing and interesting approach. As part of the search 
for new antivirals to combat COVID-19, researchers have 
been exploring carbohydrate-binding agents (CBAs) that 
target the N-linked glycans on the surface of the virus. 
Lectins are one class of CBAs that have shown promise in 
binding to viral glycoproteins and preventing virus trans-
mission and penetration into host cells [18].

Bananas, one of the most commonly consumed fruits 
worldwide, have a plethora of health benefits [19, 20] and 
are easily accessible. Among the proteins found in ripe 
bananas is the banana lectin (BanLec), a dimeric protein 
composed of two 15-kDa subunits containing 141 amino 
acids each and is related to the jacalin lectin family [21]. 
BanLec is highly specific to mannose/glucose, which 
are viral cell surface glycans, making it an attractive 
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candidate for antiviral development [22, 23]. Studies 
have shown that BanLec can inhibit HIV-1 reverse tran-
scriptase activity [24], suppress influenza viral fusion 
[25], and provide protective activity against herpes sim-
plex virus (HSV) type 1 [26]. Additionally, it has been 
observed to suppress cancer cell proliferation [27] and 
activate macrophages [28]. A mutation in BanLecs sugar 
binding site has been found to significantly reduce its 
mitogenic activity while maintaining its antiviral activ-
ity against viruses with high-mannose-type N-glycans 
on their surfaces, suggesting it has potential as a broad-
spectrum antiviral agent [24]. Through a single mutation 
(Histidine to Threonine at position 84), the H84T BanLec 
demonstrated almost non-mitogenic properties while 
still retaining antiviral activity [29].

Despite extensive research and vaccination programs 
worldwide, the search for antiviral candidates against 
SARS-CoV-2 remains ongoing. Researchers are still 
exploring natural sources for potential antiviral medi-
cation. In this study, we investigated the potential of 
BanLec as anti-SARS-CoV-2 agent by examining its 
interaction with the RBD of wild-type, Delta plus, and 
Omicron variants.

Materials and methods
BanLec gene selection
To select BanLecs for this study, sequence analysis was 
conducted, with a focus on the GXXXD (that were found 
to be specifically GDXXD and GXFXD in the MSA analy-
sis from Covés-Datson et  al. [29]) motifs present in the 
two carbohydrate binding sites (CBSs) of BanLec protein 
sequences. Genes with these desired features were pre-
ferred for sequence and protein modification [29]. The 
genes encoding BanLec proteins were obtained from 
the Banana Genome Hub database (https:// banana- 
genome- hub. south green. fr/; accessed on 21 April 2022). 
The protein sequence prediction was performed using 
the FGENESH online tool (http:// www. softb erry. com/ 
berry. phtml? topic= fgene sh& group= progr ams& subgr 
oup= gfind; accessed on 21 April 2022) [30]. The multi-
ple sequence alignment (MSA) of the predicted protein 
sequences were performed using the MEGA 11 software 
[31], and the results were visualized with the UCSF Chi-
mera package release 1.16 [32].

Physicochemical properties, allergenicity, and toxicity 
prediction of BanLecs
The ProtParam web server (https:// web. expasy. org/ 
cgi- bin/ protp aram; accessed on 02 May 2022) [33] was 
utilized to calculate the theoretical physicochemical 
properties of the BanLec proteins. Theoretical allergenic-
ity was analyzed using the Allergen FP v.1.0 web server 
(https:// ddg- pharm fac. net/ Aller genFP/; accessed on 02 

May 2022) [34]. Prediction of toxicity and toxic domains 
was conducted using the ToxDL: Interpretable protein 
toxicity predictor web server (http:// www. csbio. sjtu. edu. 
cn/ bioinf/ ToxDL/; accessed on 02 May 2022) [35].

SARS‑CoV‑2 RBDs multiple sequence alignment 
and structural modeling
The wild-type RBD protein structure of SARS-CoV-2 was 
obtained from the RCSB Protein Data Bank with PDB ID 
6M0J (https:// www. rcsb. org/ struc ture/ 6M0J; accessed on 
07 May 2022). The RBD protein structures of the Delta 
and Omicron variants were modeled using the SWISS-
MODEL web server (https:// swiss model. expasy. org/; 
accessed on 15 May 2022) [36–40], with wild-type RBD 
as a template. The sequences of the RBDs were modi-
fied through in silico mutagenesis according to the cor-
responding mutations (https:// covdb. stanf ord. edu/ page/ 
mutat ion- viewer; accessed on 15 May 2022). The mul-
tiple sequence alignment (MSA) of the RBD sequences 
were performed using the MEGA 11 software [31], and 
the results were visualized with the UCSF Chimera pack-
age release 1.16 [32].

Modeling of BanLecs three‑dimensional structures
Modeling of BanLec’s three-dimensional structures 
involved a selection process to identify two promising 
candidate protein for molecular  docking. The design of  
M. acuminata BanLec protein utilized the selected sequence 
instead of readily available models from RCSB PDB in order 
to ensure uniformity and presence of the specific GDXXD 
and GXFXD motifs found in the CBS. In silico mutagen-
esis was then performed on the selected protein sequences 
to introduce a single amino acid mutation, specifically 
changing Histidine to Threonine at the 84th position in the  
M. acuminata BanLec protein and at the 115th position in 
the M. balbisiana BanLec protein. The three-dimensional 
(3D) structures of the proteins derived from the selected 
BanLec genes were modeled using the SWISS-MODEL 
web server (https:// swiss model. expasy. org/; accessed on 28 
May 2022) [36–40]. To assess the accuracy of the protein 
modeling, Ramachandran plots were employed as a tool to 
evaluate the quality and stereochemical properties of the 
modeled proteins. By examining these plots, any deviations 
from the expected conformation were identified, offer-
ing valuable insights into potential errors that may have 
occurred during the modeling process [41, 42].

Pre‑docking preparation
Proteins modeled using SWISS-MODEL were subjected 
to pre-docking preparation, which involved the addition of 
hydrogen atoms and Kollman charges using the AutoDock-
Tools software from MGLtools v.1.5.7 (https:// ccsb. scrip ps. 
edu/ mglto ols; accessed on 05 July 2022) [43, 44]. Proteins  
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downloaded from  the PDB underwent water removal 
using AutoDockTools software, and ligand removal was 
carried out using the UCSF Chimera  version 1.15 [32]. 
All of the proteins underwent energy reduction using the 
YASARA Energy Minimization Server (http:// www. yasara. 
org/ minim izati onser ver. htm; accessed on 05 July 2022) 
[45] and were converted into .sce format using YASARA 
View [46].

Molecular docking analysis
The molecular docking utilized the ClusPro 2.0 protein-
protein docking web server (https:// clusp ro. bu. edu/ 
home. php; accessed on 10 July 2022) [47–49]. Calcu-
lation of the binding-free energy (ΔG) was conducted 
using PROtein binDIng enerGY prediction (PRODIGY)  
web server (https:// wenmr. scien ce. uu. nl/ prodi gy/; 
accessed on 10 July 2022) [50]. The interaction interfaces 
of the docked complexes were identified and analyzed 
through the EMBL-EBI PDBsum server (https:// www. ebi. 
ac. uk/ thorn ton- srv/ datab ases/ pdbsum/ Gener ate. html/; 
accessed on 10 July 2022) [51]. Additional molecular 
docking analysis was performed using the HDOCK web  
server (http:// hdock. phys. hust. edu. cn/; accessed on 14 
July 2022) [52, 53] to obtain the docking scores for 
confirming the interaction of the complexes.

Visualization of the best docked models
The ClusPro docking results were used to select the 
single best model of each complex. These complexes 
were then visualized in two dimension using the  
DIMPLOT program in LigPlot+ v.2.2 software [54]. The 
3D structures of the docked complexes were visualized 
using PyMOL Molecular Graphics System software, 
version 2.0 [55].

Molecular dynamic simulation study
The molecular dynamic simulation was performed fol-
lowing the protocols outlined by Celik et al. [41], utiliz-
ing the GROMACS 2019.2 version [56]. This simulation 
was conducted to investigate and confirm the interaction 
of the complexes and to simulate their dynamic proper-
ties. The topology created for the BanLec-RBD com-
plexes utilized the AMBER99SB-ILDN force fields [57] 
and the SCP water model. The system was solvated in a 
triclinic box with 10Å distance from the protein–protein 
complex. The system was subsequently neutralized by 
adding 0.15 M NaCl, and the steepest descent integrator 
was used to perform energy minimization in 5000 steps. 
The equilibration of the system was accomplished with 
0.3 ns NVT and 0.3 ns NPT stages, respectively, using a 
V-rescale thermostat and a Parrinello-Rahman barostat 
[58]. Simulation of 1000 frames for 100 ns was performed 
at 2 fs with a leap-frog integrator. Trajectory analysis was 

conducted using RMSD, RMSF, and Rg, and the plots 
were analyzed using QtGrace v0.2.6 [59].

The schematic representation of the study’s workflow 
and expected outcome can be seen in Fig. 1.

Results
BanLec gene selection
Nine BanLec candidates with the appropriate motifs 
from two Musa species (five from M. acuminata and four 
from M. balbisiana) were identified in our analysis. The 
MSA of the protein sequences and their motifs are high-
lighted (Fig. 2). Ma09_t10**0.1 is for M. acuminata Ban-
Lecs, and Mba09_g09**0.1 is for M. balbisiana BanLecs, 
with * representing any digit.

Physicochemical property, allergenicity, and toxicity 
of BanLec
Table  1 shows the values of several physicochemical 
properties, allergenicity, and toxicity of the selected Ban-
Lec proteins (Ma09_t10410.1 WT, Ma09_t10410.1 H84T, 
Mba09_g09870.1 WT, and Mba09_g09870.1 H115T), 
where the BanLecs are seen to have an average molecu-
lar mass of 14,576.4 Da, an average theoretical isoelectric 
point of 6.16, and a computed average instability index 
of 8.97, where predicted allergenicity of the BanLecs 
resulted in an average Tanimoto index of 0.84, and an 
average ToxDL score of approximately 0.0268.

MSA and homology modeling of RBD variants
The MSA of the four RBD variants in this study  
confirmed the presence of mutations in the RBD variants,  
as depicted in Fig.  3 with mutations highlighted in 
red boxes. The WT-RBD protein was retrieved from 
the  Protein Data Bank (PDB ID: 6M0J), chosen 
because molecular docking were successfully con-
ducted using this structure in a previous research by 
Celik et  al. [41]. The amino acid sequences of Delta 
and Delta Plus RBD proteins were also obtained from 
Celik et al. [41] .

The amino acid sequences of the Omicron RBD protein 
were compiled based on this information. All proteins 
were modeled in SWISS-MODEL and visualized as rib-
bons, as shown in Fig. 4. The superimpose model involves 
comparing the structural conformation of various com-
ponents, particularly the receptor-binding domain 
(RBD), with the wild-type (WT) RBD. In this case, 
the Delta RBD exhibits a root-mean-square deviation 
(RMSD) of 0.061Å compared to the WT-RBD, involving 
the alignment of 189 atoms. Similarly, the Delta Plus RBD 
shows an identical RMSD value of 0.061 Å, aligning 189 
atoms with the WT-RBD. On the other hand, the Omi-
cron RBD demonstrates a higher RMSD value of 0.304 Å, 
aligning 182 atoms with the WT-RBD.

http://www.yasara.org/minimizationserver.htm
http://www.yasara.org/minimizationserver.htm
https://cluspro.bu.edu/home.php
https://cluspro.bu.edu/home.php
https://wenmr.science.uu.nl/prodigy/
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html/
https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html/
http://hdock.phys.hust.edu.cn/
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Fig. 1 Visual representation of BanLec and SARS-CoV-2 RBD molecular docking and molecular dynamics simulation workflow (Created 
with BioRender.com)
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Homology modeling of BanLecs
After undergoing a selection process, the nine BanLec 
proteins were subjected to homology modeling via the 
SWISS-MODEL web server. Table 2 presents the names 
of gene sequences utilized for the protein modeling, with 

the “oligo state” denoting the type of protein assembly 
present in the modeled protein. The template specifies 
the PDB code for the template protein employed in the 
modeling process, while “the sequence’s identity” denotes 
percentage of similarity discovered in the target-template 

Fig. 2 The MSA of nine BanLec protein sequences from M. acuminata and M. balbisiana, with the red boxes highlighting the two carbohydrate 
binding sites (CBS)

Table 1 Overview of the physicochemical property, allergenicity, and toxicity of the four selected BanLec proteins

BanLec protein Molecule weight 
(kDa)

Theoretic pI Instability index Allergenicity Toxicity

Ma09_t10410.1 WT 14,549.39 6.26 9.18 0.83 No toxic domains detected

Ma09_t10410.1 H84T 14,513.36 6.06 9.18 0.83

Mba09_g09870.1 WT 14,639.52 6.26 9.44 0.83

Mba09_g09870.1 H115T 14,603.48 6.06 8.09 0.84
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alignment. The global model quality estimate (GMQE) 
is a quality estimate derived from the combination of 
target-template alignment and template structure prop-
erties. The qualitative model energy analysis (QMEAN) 
is a composite scoring function that indicates global and 
local derivative of absolute quality estimates of a single 
model [60, 61].

The utilization of Ramachandran plots in protein mod-
eling played a crucial role in assessing the precision of 
protein models, evaluating their accuracy, and identify-
ing potential variations from the desired structural con-
formation. Figure  5 displays the Ramachandran plots 
for the nine modelled BanLecs proteins obtained from 
M. acuminata and M. balbisiana. These plots reveal 
that all amino acids reside predominantly in the favored 
regions, represented by dark green and light green con-
tour lines. Only a few amino acids are located in the 
allowed regions, indicated by the lightest green con-
tour line. The accompanying Table  3 further demon-
strates that all models exhibit amino acid distribution 

within the Ramachandran favored regions ranging from 
96.35 to 97.09%, with a maximum of 0.36% categorized 
as Ramachandran outliers. These results confirm the 
successful modeling, as the percentage coverage in the 
favored regions surpasses the 90% threshold indicative 
of high-quality models [42, 62].

Molecular docking of the BanLecs on WT‑RBD
The initial molecular docking analysis involved nine 
modeled BanLec proteins and the WT-RBD. The analy-
sis showed that while there were numerous interactions 
between the two proteins, there were not enough inter-
actions with the key amino acid residues of the SARS-
CoV-2 RBD. From the docked complexes, two models of 
each BanLec-WT-RBD complex were selected based on 
their lowest energy scores as determined by the ClusPro. 
The selected models were then further analyzed for their 
binding affinity using PRODIGY web server, which is a 
novel tool for predicting affinity [63]. Table  4 presents 

Fig. 3 The MSA of four RBDs of SARS-CoV-2. The differences in amino acid sequences due to mutations are highlighted by red boxes

Fig. 4 The three-dimensional (3D) structural models of four receptor-binding domains (RBDs) of SARS-CoV-2, which include the wild-type RBD 
and three variants (Delta, Delta Plus, and Omicron). a The wild-type RBD structure is represented by a ribbon visualization in a pink color. b The 
delta RBD structure is depicted as a ribbon in a striking red color, emphasizing its specific mutations (R452 and K478). c The delta plus RBD structure 
is presented as a ribbon in an orange color, with its mutations (N417, R452, and K478) highlighted in a vibrant yellow shade. d The Omicron RBD 
structure is showcased as a ribbon in a regal purple color, and its mutations (K440, S446, N417, N477, K478, A484, R493, S496, R498, Y501, and H505) 
are highlighted in a vibrant yellow color. e The superimposed model encompasses the comparative analysis of the structural conformation 
of various SARS-CoV-2 variants’ RBDs with the wild-type (WT) RBD

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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the analysis of the molecular docking results, including 
the lowest energy score, binding affinity, and interaction 
interface of the docked complexes.

Previous findings have identified specific amino acid 
residues in the RBD that are crucial for the interaction 
between the SARS-CoV-2 spike protein and hACE2. 
These amino acids are considered key amino acid resi-
dues, and their interactions are also observed in interac-
tions in this study. The WT-RBD key amino acids include 
Lys417, Gly446, Tyr449, Tyr453, Leu455, Phe456, Ala475, 
Gly476, Phe486, Asn487, Tyr489, Phe490, Gln493, 
Gly496, Gln498, Thr500, Asn501, Gly502, and Tyr505 
[64, 65]. Interestingly, the key residues considered in this 
study are the same for Delta, Delta plus, and Omicron 
variants, with variations depending on the position of 
the mutation. In the 6M0J protein structure, 10 hydro-
gen bonds and 1 salt bridge were identified between the 
hACE2 and WT-RBD protein. Specifically, a salt bridge 
formed with the Lys417 residue of WT-RBD, along with 
hydrogen bonds involving the Lys417, Gly446, Gly496, 
and Gly502 residues. Additionally, two hydrogen bonds 
were observed  with  each of the Tyr449, Asn487, and 
Thr500 residues [65].

Out of the nine BanLecs considered, only two were 
chosen as the best candidates for in silico mutagenesis 
aimed at reducing their mitogenicity: Ma09_t10410.1 
from M. acuminata (hereafter referred to as Ma09) and 
Mba09_g09870.1 from M. balbisiana (hereafter referred 
to as Mba09). The selection was based on their interac-
tions with key amino acid residues on the SARS-CoV-2 
RBD and the binding affinity of their models. In silico 

mutagenesis involved changing the specific amino acid, 
Histidine, to Threonine. The mutation was carried out 
at the 84th position for Ma09 and the 115th position for 
Mba09. The difference in sequence length between the 
two protein sequences cause different mutation positions. 
Instead of in the 84th position seen in the MSA, the muta-
tion was carried out on the 115th position for Mba09. 
This different is attributed  to  the Mba09 sequence hav-
ing an extra 31 residues in the beginning of the sequence, 
highlighted in the MSA in Fig. 6. However,  the different 
positions in the aligned protein sequences do not change 
the actual position of the in silico mutagenesis carried out 
in the amino acids of the two sequences. As mentioned 
above, the mutation was performed at the 84th position for 
Ma09 and the 115th position for Mba09. The two protein 
sequences were also aligned with reference sequence of 
WT (PDB ID: 4PIF) and the modified H84T M. acuminata 
BanLec (PDB ID: 4PIU) from a previous study [24].

The 3D structures of the four modeled BanLecs (two 
WT and 2 mutated BanLecs) were visualized using 
PyMOL and are shown in Fig. 7, where the mutated sites 
are highlighted. The loss of a pi-pi stack between Histi-
dine (position 84 in Ma09 and 115 in Mba09) and Tyros-
ine (position 83 in Ma09 and 114 in Mba09), which are 
both aromatic rings, was observed as a result of the in 
silico mutagenesis of the Histidine (H84/115) into Threo-
nine (position 84 in Ma09 and 115 in Mba09 or T84/115).

Molecular docking of selected BanLecs on RBD
The interactions between protein-protein complexes 
were analyzed by docking the four variants of RBD and 

Table 2 Detailed overview of the properties and description of the SWISS-MODEL homology modeling results of the nine modeled 
BanLec proteins

Gene name Model Oligo state Template Template description Sequence’s 
identity

GMQE QMEAN

Ma09_t10410.1 1 Homo-dimer 4pif.1.A Ripening associated protein (Crystal structure of recombinant 
WT BanLec)

97.16% 0.92 2.20

Ma09_t10460.1 1 Homo-dimer 4pif.1.A Ripening associated protein (Crystal structure of recombinant 
WT BanLec)

97.16% 0.92 2.20

Ma09_t10470.1 1 Homo-dimer 4pif.1.A Ripening associated protein (Crystal structure of recombinant 
WT BanLec)

94.33% 0.91 2.52

Ma09_t10450.1 2 Homo-dimer 4pif.1.A Ripening associated protein (Crystal structure of recombinant 
WT BanLec)

92.20% 0.90 2.44

Ma09_t10350.1 1 Homo-dimer 7kmu.1.A Jacalin-type lectin domain-containing protein (Structure of WT 
Malaysian BanLec)

100.0% 0.89 2.51

Mba09_g09930.1 1 Homo-dimer 4pif.1.A Ripening associated protein (Crystal structure of recombinant 
WT BanLec)

94.33% 0.89 2.25

Mba09_g09920.1 7 Homo-dimer 4pif.1.A Ripening associated protein (Crystal structure of recombinant 
WT BanLec)

92.91% 0.57 2.21

Mba09_g09880.1 1 Homo-dimer 3miv.1.A Lectin (Structure of Banana lectin-Glc-alpha(1,2)-Glc complex) 95.04% 0.76 1.50

Mba09_g09870.1 2 Homo-dimer 4pif.1.A Ripening associated protein (Crystal structure of recombinant 
WT BanLec)

92.91% 0.70 2.67
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the four BanLec proteins. ClusPro 2.0 provides vari-
ous scoring methods, in this study, the Balanced Scor-
ing Coefficients [47] was utilized. The models with 
lowest energy were selected as the best docked models. 
Additionally, PRODIGY was used to analyze the bind-
ing affinity of each docked complex. Table 5 summarizes 

the binding properties of the best-selected complex from 
each molecular docking simulation. The best models 
were chosen based on their lowest energy and binding 
affinity predicted using ClusPro.

The interaction between BanLecs and WT-RBD 
was characterized by a higher number of salt bridges, 

Fig. 5 The Ramachandran plots obtained from the nine modelled BanLecs proteins derived from M. acuminata and M. balbisiana. The plots are 
presented individually for each protein: a Ma09_t10350.1, b Ma09_t10410.1, c Ma09_t10450.1, d Ma09_t10460.1, e Ma09_t10470.1, f Mba09_
g09870.1, g Mba09_g09880.1, h Mba09_g09920.1, and i Mba09_g09930.1
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H-bonds, and non-bonded interactions, with a greater 
total of H-bonds and non-bonded interactions with 
all residues than the other variants. BanLecs however 
showed a preference for the Omicron RBD when con-
sidering the RBD’s key amino acid residues. This pre-
dilection was due to the presence of more H-bonds, 
non-bonded interactions, and salt bridge interactions 
within the key residues compared to the other variants. 
In addition to the overall proclivity for BanLecs, each 
RBD variant also exhibited a preference for specific Ban-
Lecs based on the interactions and bonds within the key 
RBD residues.

The selection of the best modeled complex of each RBD 
with its corresponding BanLec protein took into account 
the binding affinity and the total number of interactions 
and bonds between the two proteins. To confirm the 
interaction between the RBD variants and their corre-
sponding BanLec protein, additional molecular docking 
was performed using the HDOCK web server (Table 6). 
A two-step docking strategy using ClusPro and HDOCK 
provides multiple benefits for predicting protein-protein 
complexes. These methods employ different algorithms 
and scoring functions, leading to diverse perspectives 
that can potentially improve accuracy. The strategy 
involves an initial round with ClusPro to explore a wide 
range of docking poses, followed by a second round with 
HDOCK to refine and optimize the solutions obtained 
from ClusPro. By combining these programs, limitations 
specific to each method can be overcome, and challenges 
in certain protein-protein interactions can be addressed. 
The consistency of predictions from both ClusPro and 
HDOCK serves as validation and increases confidence in 
the accuracy of the docking results. However, it is essen-
tial to critically evaluate the outcomes and consider the 
unique characteristics of the target proteins and the 
specific docking problem at hand.

The HDOCK scores were calculated using binding 
affinity predictions and provide insight into the quality 
of the models created and the accuracy of the homology-
modeled structure [53]. Among the four complexes, the 
Omicron-Ma09 WT complex yields the best docking 
score (−290.10 kJ/mol) with the ligand RMSD of 58.49Å. 
While the scores are not vastly distinct, this affirms that 
Omicron RBD has a predilection for BanLec as compared 
to the other variants.

Figure  8 illustrates the 3D and 2D configurations of 
the docking results of the four complexes. The interface 
interaction of the four complexes was further assessed 
using PDBsum. The Omicron RBD-Ma09 WT com-
plex displays the highest number of interactions with 
213 non-bonded interactions, 14 H-bonds, and two salt 
bridges. The Delta RBD-Ma09 H84T complex contains 
200 non-bonded interactions, 14 H-bonds, and one 
salt bridge. Delta plus RBD-Mba09 WT complex has 
179 non-bonded interactions, 12 H-bonds, and no salt 
bridges. Lastly, the WT-RBD-Mba09 H115T complex has 
124 non-bonded interactions, 19 H-bonds, and one salt 
bridge.

Figure  8a illustrates the interactions between the 
modified H115T M. balbisiana BanLec and the wild-
type SARS-CoV-2 RBD. These interactions involve the 
formation of a salt bridge with Lys417 and H-bonds 
with Lys417, Tyr453, Ala475, Asn487, Gln493, Gln496, 
Gln498, Asn501, and Tyr505, which are key amino acid 
residues in the wild-type RBD. Figure  8b displays the 
interactions between the modified H84T M. acuminata 
BanLec and the Delta variant RBD. The interactions 
observed in this case include H-bonds and salt bridges 
formed between the BanLec and important amino 
acids in the RBD, such as a salt bridge with Lys417, and 
H-bonds with Tyr453, Ala475, Asn487, Tyr489, Gln493, 
Gly496, Gln498, Gly502, and Tyr505. Figure 8c demon-
strates the interactions between the wild-type M. bal-
bisiana BanLec and the Delta Plus variant RBD. In this 
case, H-bonds are formed between the BanLec and key 
amino acids in the RBD, specifically at residues Tyr449, 
Tyr453, Asn487, Gln493, Gln496, Thr500, Asn501, and 
Tyr505. Figure  8d presents the interaction between 
the wild-type M. acuminata BanLec and the Omicron 
variant RBD. The interactions observed involve both 
H-bonds and salt bridges formed between the BanLec 
and crucial amino acids in the RBD. The salt bridge 
occurs at residue His505, and H-bonds occur at resi-
dues Asn417, Tyr453, Ala475, Asn487, Tyr489, Arg493, 
Ser496, Gly502, and His505.

Molecular dynamics simulations
Molecular dynamics simulations (MDS) was per-
formed on the WT-RBD-Mba09 H115T and Omicron 

Table 3 Distribution of amino acids in Ramachandran 
conformational regions in the nine modelled BanLec proteins

The modeled BanLec 
proteins

Ramachandran 
favored

Ramachandran outliers

Ma09_t10350.1 96.39% 0.00%

Ma09_t10410.1 97.09% 0.36% (B22 Pro)

Ma09_t10450.1 96.36% 0.36% (B22 Pro)

Ma09_t10460.1 97.09% 0.36% (B22 Pro)

Ma09_t10470.1 96.36% 0.36% (B22 Pro)

Mba09_g09870.1 96.36% 0.36% (B22 Pro)

Mba09_g09880.1 96.35% 0.00%

Mba09_g09920.1 96.73% 0.36% (B78 Pro)

Mba09_g09930.1 96.36% 0.36% (B25 Pro)
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RBD-Ma09 WT complexes based on their binding affin-
ity, number of salt bridges, hydrogen bond, and non-
bonded interaction with key RBD amino acid residues. 
The results of the RMSD and Rg analyses, which indicate 
a significant difference in overall stability between the 
two complexes, are illustrated in Fig. 9. The overall sta-
bility of the RBD-BanLec complexes was demonstrated 
using the primary molecular dynamics (MD) parameters 
of root-mean-square deviation (RMSD), radius of gyra-
tion (Rg), and root-mean-square fluctuation (RMSF).

In the case of the WT-RBD-Mba09 H115T complex, 
the RMSD shows more fluctuation, particularly in the 
first 40 ns, ranging from 0.25 to >0.5 nm, then decreases 
to a steadier level. However, a fluctuation at 0.25 and 0.4 
nm is observed between 40 and 100 ns, and  the com-
plex tends to dissociate in the end of the simulation. On 
the other hand, the Omicron RBD-Ma09 WT complex 
exhibits greater stability throughout the 100 ns simu-
lation, with the RMSD beginning at 0.15 nm and never 
falling below or exceeding 0.3 nm. The Rg value of the 
WT-RBD-Mba09 H115T complex is much more stable 
than its RMSD value, ranging from 2.35 to 2.55 nm over-
all throughout 0–100 ns, with a fluctuation up to 2.5 nm 
at around 18 ns. However, it is still higher and less steady 
than the Rg value of the Omicron RBD-Ma09 WT comw.

The analysis results of the residual RMSF of each com-
plex are shown in Fig. 10. The RMSF values for WT-RBD 
range from 0.07 to 0.45 nm, while those for Omicron 
RBD range from 0.05 to 0.35 nm, indicating slightly 

higher values and larger fluctuations in the graph. The 
counterpart of Omicron RBD, Ma09 WT BanLec displays 
a more stable structure with RMSF values ranging from 
0.05 to 0.2 nm across all residues, while the WT-RBD 
counterpart, Mba09 H115T BanLec, exhibits greater 
fluctuation with values ranging from 0.08 to 0.35 nm

Table 7 shows the results of the MM-PBSA binding-free 
energy (BFE) calculation conducted on the 100 ns MDS 
with 1000 frames. A notable difference was observed in 
the calculated BFE values between the Omicron RBD-
Ma09 WT complex (−209.67±34.14 kJ/mol) and the 
Wild-type RBD-Mba09 H115T complex (−17.66±51.44 
kJ/mol), showing a lower BFE value for the Omicron 
RBD-Ma09 WT complex. Lower BFE values indicate a 
more stable complex.

Discussion
BanLec genes are abundant in several species of banana 
(Musa spp.). However, the genome of one banana spe-
cies only contains a few variations of lectin-coding genes, 
making it necessary to select the best candidate for the 
development of BanLec protein as a potential antiviral. 
BanLec genes with a specific motif in their ligand bind-
ing loop sites, which characterizes a carbohydrate bind-
ing site, are preferred sequences for protein sequence 
and structure modification [29]. The presence of this spe-
cific motif gives the sequences their preferred structural 
properties, which include two carbohydrate binding sites 
(CBS), instead of having only one or zero CBS in their 

Fig. 6 The MSA of four BanLec protein sequences derived from M. acuminata (Ma09_t10410.1) and M. balbisiana (Mba09_g09870.1). These protein 
sequences were aligned with both the reference sequence of WT (PDB ID: 4PIF) and the modified H84T M. acuminata BanLec (PDB ID: 4PIU). The 
amino acid sequence variations are visually emphasized by a red box
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structure. These sites may contribute to stronger interac-
tions and binding between BanLec and mannose/glucose. 
The presence of the second CBS was revealed in a study 
by Meagher et al. [21], and it has similar properties to the 
first CBS.

The selected BanLec proteins (Ma09_t10410.1 WT, 
Ma09_t10410.1 H84T, Mba09_g09870.1 WT, and Mba09_
g09870.1 H115T) have an average molecular mass of 
14,576.4 Da, a theoretical isoelectric point of 6.16, and 
a computed instability index of 8.97, classifying the pro-
teins as stable. The predicted allergenicity of the BanLecs 
resulted in an average Tanimoto index of 0.84, signifying 
a high similarity between the two sets of protein finger-
print in the allergenicity analysis and suggesting that the 
BanLecs are probably non-allergenic. Allergenicity refers 
to the capability of a molecule or compound to induce a 
Th2 response and production of IgE antibodies by B cells 
that are allergen-related [66, 67]. One study showed no 

evidence of type I allergy to BanLec, as demonstrated by 
the lack of BanLec-specific serum IgE [68].

Toxicity of molecules or compounds can be calculated 
in silico by analyzing amino acid sequences and identify-
ing toxic domains. According to toxicity prediction, the 
BanLecs have an average ToxDL score of approximately 
0.0268, which is considered to be low toxic. The higher 
the score, the less likely the protein will be toxic. This 
score was calculated by adding the scores assigned to 
individual amino acids, where some amino acids contrib-
uted more to toxicity than others [35]. Despite the indica-
tions of low toxicity, the analysis reveals that none of the 
BanLec proteins contain toxic domains. Essentially, Ban-
Lec has been shown to have mitogenic activity [69]. How-
ever, it is still possible to engineer this protein produce 
BanLec that retains its efficacy with minimal or no mito-
genic activity [70]. The values above are estimates and 
predictions based on in silico simulations, necessitating 

Fig. 7 The 3D structural model of four BanLec proteins, with a specific mutation site highlighted. The mutation involved replacing Histidine 84/115 
(H84/115) with Threonine 84/115 (T84/115), resulting in the disruption of a crucial pi-pi stacking interaction between H84/115 and Y83/114. Both 
these amino acids have aromatic rings, and pi-pi stacking refers to the non-covalent interactions that occur between these aromatic rings
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additional in vitro testing prior to implementing BanLecs 
as a therapeutic agent.

SARS-CoV-2, with its single-stranded RNA genome, 
is susceptible to rapid and higher rates of mutation [71], 
which may lead to changes in viral fitness, including 
improved infectivity, illness severity in the host, and other 
viral functions [2]. While mutations can occur anywhere 
along the viral genome, this study highlights mutation 
in RBD of the SARS-CoV-2 spike subunit 1 protein. The 
wild-type (WT) RBD (Wuhan-Hu-1; NCBI ID: P0DTC2) 
was used as a reference, with the Delta (B.1.617.2; NCBI 
ID: QWK65230.1) RBD containing two mutations, L452R 
and T478K, and the Delta Plus containing three muta-
tions, K417N, L452R, and T478K. Omicron (B.1.1.529), 
the most recent variant of concern (VOC), has more 
mutations than the previously predominant Delta vari-
ant, including K417N, N440K, G446S, S477N, T478K, 
E484A, Q493R, G496S, Q498R, N501Y, and Y505H [72]. 
The presence of all of these mutations were confirmed 
in an MSA shown in Fig.  3. The WT-RBD and its vari-
ants were modelled and superimposed in this study. The 
RMSD values of the superimposed RBD protein struc-
tures seen in Fig.  4 provide insights into the structural 
differences and similarities between the RBD variants 
and the WT-RBD, highlighting the extent of their devia-
tions at the atomic level. A higher RMSD value signifies 
a more pronounced distinction or deviation between a 
protein structure and its wild-type reference. This indi-
cates substantial alterations or mutations in the protein 
structure, which can potentially impact its function and 
overall configuration.

According to Covés-Datson et  al. [29], Swanson et  al. 
[24], and the findings in our studies, there is a pi-pi stack 
in the BanLecs between a Histidine (position 84 in Ma09 
and 115 in Mba09) and a Tyrosine (position 83 in Ma09 
and 114 in Mba09), which are both aromatic rings. Pi-pi 
stacking refers to the attractive, non-covalent interac-
tions between aromatic rings. This disruption of the 
pi-pi stack has been linked to a reduction in mitogenic-
ity while preserving broad-spectrum antiviral properties 
[29]. This may be due to the ability of the protein to retain 

wild-type conformational features and could also be 
related to properties of the Threonine 84/115 side chain 
[24, 29]. The pi-pi stacking is diminished by the in silico 
mutagenesis since T84/115 does not have an aromatic 
ring structure, unlike H84/115.

The results of the molecular docking simulation 
of the four BanLecs (two WT and two mutated) with 
the RBD variants (Table  5) exhibited that at the criti-
cal or key amino acids, BanLecs interacted strongly 
with each RBD variant. The presence of a greater the 
number of bonds and interactions in a docked complex 
signifies a better prediction of binding and confirms 
the ability of BanLecs to establish interactions with the 
RBD of the SARS-CoV-2 spike S1 protein. H-bonds are 
covalent bond formed between a hydrogen atom and 
an extremely electronegative atom, and they are con-
sidered strong when they occur in large or multiple 
numbers [73]. A salt bridge is an ion pair that forms 
between two side chains of a protein. Even though it is 
comprised of non-covalent bonds, it significantly con-
tributes to protein stability and overall protein binding 
[74]. Salt bridges and H-bonds interaction have been 
shown to play a critical role in protein-ligand stabil-
ity [75]. The strength of H-bonds has been correlated 
to the distance or length between the two molecules, 
where shorter distances signify a stronger bond [76], 
and as seen from the green dotted lines in Fig.  8, the 
length hydrogen bonds of all complexes range from 
2.00 to 3.36 Å. According to McRee [77], the distance 
of hydrogen bonds is commonly from 2.7 to 3.3 Å, with 
3.0 Å being the most common value. This demonstrates 
that the H-bond strengths of the four best complexes 
range from moderate to strong.

In terms of the number of interactions and bonds, the 
RBD of SARS-CoV-2 exhibits a slightly higher preference 
for M. acuminata BanLecs. However, it shows a higher 
binding affinity value in its interactions with M. balbisi-
ana BanLecs. In another stage of molecular docking, it 
was observed that BanLec Ma09 WT exhibits a stronger 
affinity towards Omicron RBD, suggesting its potential to 
hinder RBD binding to hACE2. Nevertheless, the ligand 
RMSD values in the molecular docking results for the 
four top BanLec-RBD complexes ranged from 58.49 to 
77.70 Å. In contrast, the ligand RMSD values for hACE2 
docked with RBD variants in the study by Celik et  al. 
[41] ranged from 0.34 to 0.61 Å. A more negative ligand 
RMSD value indicates less deviation from its reference 
position, hence a better docking result. It is important to 
note that hACE2, being the natural receptor molecule for 
the SARS-CoV-2 RBD, is larger in size (603 aa in 6M0J 
PBD structure) compared to BanLecs (140–171 aa) [65], 
which may contribute to their better RMSD values when 
docked with the RBDs. Nonetheless, the analyzed binding 

Table 6 HDOCK molecular docking results of the four best RBD-
BanLec complexes showing the docking score and ligand RMSD

SARS‑CoV‑2 variants BanLecs Docking 
score (kJ/
mol)

Ligand RMSD (Å)

WT Mba09 H115T −270.71 77.70

Delta Ma09 H84T −277.70 67.11

Delta Plus Mba09 WT −249.66 70.56

Omicron Ma09 WT −290.10 58.49
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affinity values of each BanLec-RBD complex (rangin from 
−14.7 to −16.4 kJ/mol) still show a more negative value 
compared to results of binding affinity between docked 
hACE2 and RBD variants in the study by Celik et al. [41], 
which ranged from −12.8 to −14.2 kJ/mol.

These results suggest that BanLecs are capable of bind-
ing to the active site of RBDs from various variants with 
high affinity. Moreover, they can bind to key amino acids 
in the RBDs that play a crucial role in RBD’s interaction 
with hACE2. Therefore, these findings indicate that Ban-
Lecs have the potential to  effectively inhibit the early 

Fig. 8 The diagrammatic representation in 3D and 2D configurations of the complex interface. a Wild-type RBD-Mba09 H115T complex (Chain A: 
RBD; Chain B: BanLec), b Delta RBD-Ma09 H84T complex (Chain A: RBD; Chain B: BanLec), c Delta plus RBD-Mba09 WT complex (Chain A: RBD; Chain 
B: BanLec), and d Omicron RBD-Ma09 WT complex (Chain A: BanLec; Chain B: RBD). In the PDBsum graphics (shown on the right), hydrogen bonds 
are indicated by blue straight lines, non-bonded contacts are represented by orange dashed lines, and salt bridges are denoted by red straight lines. 
In the LigPlot graphics (shown below the 3D graph), the representation of the ligands and protein side chains is depicted in a ball-and-stick format. 
The ligand bonds are shown in purple, while hydrogen bonds are depicted as green dotted lines with their length printed in the middle. Spoked 
arcs indicate protein residues that have non-bonded contacts with the ligand. Additionally, red circles and ellipses highlight protein residues 
that occupy similar positions in 3D when the two structural models are aligned



Page 18 of 22Hessel et al. Journal of Genetic Engineering and Biotechnology          (2023) 21:148 

stages of SARS-CoV-2 infection in human cells. This 
aligns with previous reports indicating that certain lec-
tins derived from natural sources can bind to glycans on 
viral glycoproteins, thereby preventing virus transmis-
sion and entry into host cells [70, 78–80].

The stability of interactions is a crucial aspect to con-
sider when analyzing molecular interaction predictions, 
as in the case of this study. Molecular dynamics (MD) 
simulation is a computational chemistry technique that 
simulates the behavior of atoms and/or molecules over a 

Fig. 9 A RMSD and B Rg of SARS-CoV-2 WT and Omicron variants RBD complexed with their corresponding banana lectins

Fig. 10 Residual RMSF of A SARS-CoV-2 RBD variants and B their corresponding banana lectin

Table 7 The BFE values generated between the interaction of SARS-CoV-2 spike proteins and BanLec as calculated using MM-PBSA

Protein complex Types of interaction energy (kJ/mol)

Van der Waals Electrostatic Polar solvation SASA Total binding‑free energy

Omicron RBD- BanLec −378.958±30.662 −556.282±52.801 773.583±58.558 −48.015±3.089 −209.672±34.141
WT-RBD-BanLec −283.760±29.761 −259.071±55.518 564.757±89.688 −39.585±3.685 −17.658±51.442
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specified time period. This provides visual representation 
of the molecular movement of the complex and its inter-
actions. In other words, this method allows for the simu-
lation of molecules’ time-dependent motion and enables 
exploration of their conformational space [81]. The back-
bone atoms of the complexes are used to calculate the 
RMSD, which was utilized to observe trajectory equilibra-
tion. Protein structure shifts and deviations can be deter-
mined by this important stability analysis parameter. Rg is 
also important because it calculates the distance between 
mass-weighted RMS values of atoms from their center of 
mass and provides information about the compactness 
and overall dimensions of proteins [64, 82, 83]. Trajectory 
results with lower and more constant RMSD and Rg val-
ues indicate a more stable complex, whereas higher and 
more fluctuating values indicate a more unstable complex. 
Results of the molecular dynamics simulation showed that 
both WT-RBD-Mba09 H115T and Omicron RBD-Ma09 
WT complexes were fairly stable throughout the simula-
tion, with the latter complex being more stable with lower 
and less fluctuating RMSD and Rg.

RMSF is a parameter used to measure the flexibility 
and/or mobility of protein structures by tracking their 
conformational changes over time [64, 82]. A lower 
RMSF value implies a less adaptable and mobile struc-
ture, while a higher value suggests the opposite. The 
residual RMSF trajectories offer insight into the fluc-
tuations that visualize the conformational changes 
and flexibility of each of the proteins in a complex. 
The graph in Fig. 10 reveals that the RBDs of WT and 
Omicron undergo greater changes than their BanLec 
counterparts. Nevertheless, the Omicron RBD exhibits 
lower fluctuation than the WT-RBD, suggesting greater 
conformational stability. Higher RMSF values indicate 
greater protein flexibility, which may result in reduced 
stability due to increased susceptibility to conforma-
tional changes. The greater residual flexibility observed 
in the WT-RBD-Mba09 H115T complex compared to 
the Omicron RBD-Ma09 WT complex implies a higher 
level of mobility and flexibility, thus less stability. BFE 
values were observed to favor the stability of the Omi-
cron RBD-Ma09 WT complex. According to RMSD, Rg, 
RMSF, and BFE values, the interaction between WT-
RBD and the corresponding BanLec Mba09 H115T was 
found to be less stable, with both the RBD and BanLec 
proteins exhibiting higher levels of fluctuation and flex-
ibility compared to the corresponding proteins in the 
Omicron RBD-Ma09 WT complex. These findings sup-
port the results of the molecular docking analysis, sug-
gesting that the BanLec has a stronger preference for 
the Omicron RBD over the WT-RBD. These findings 
may contribute to explaining why the Omicron variant 
is more infectious than the WT SARS-CoV-2. The study 

results also suggest that the preference for BanLecs is 
stronger in Omicron RBD compared to WT-RBD, and 
this preference may extend to the hACE2 protein.

Conclusions
This study was conducted to explore the potential of 
BanLec proteins as a potent antiviral candidate against 
SARS-CoV-2 by simulating their binding with four vari-
ants of SARS-CoV-2 RBDs. Molecular docking analysis 
revealed strong interactions and bonds in the active site 
between the SARS-CoV-2 RBD variants and different 
BanLec proteins from M. acuminata and M. balbisiana. 
Moreover, molecular dynamics simulation demonstrated 
that the Omicron variant RBD exhibited a stable and 
robust interaction with wild-type M. acuminata BanLec, 
providing further insight into complex stability. These 
findings suggest that BanLecs could serve as a potential 
antiviral agent against SARS-CoV-2 by inhibiting the 
fusion of the virus with host cell. However, further inves-
tigation is required to assess the safety and efficacy of 
BanLecs as antiviral agents.
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