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Abstract 

Background The identification of miRNAs as well as characterization of miRNA‑mRNA interactions in SARS‑CoV‑2 
infection is important to understand their role in disease pathogenesis. Therefore the aim of the present study 
was to measure the expression levels of hsa‑mir‑18a‑5p in the sera of severe COVID‑19 Egyptian patients admitted 
to ICU to investigate its roles in the pathogenesis and severity of COVID‑19 disease.

Methods A total of 180 unvaccinated severe COVID‑19 patients were enrolled in our study. Besides the routine labo‑
ratory work, the expression level of hsa‑mir‑18a‑5p was done using reverse transcription quantitative real‑time PCR 
(RTqPCR) technique. Also, target genes of hsa‑mir‑18a‑5p were explored by using online bioinformatics databases.

Results The expression level of hsa‑mir‑18a‑5p decreased in nonsurvival severe COVID‑19 patients (0.38 ± 0.26) 
when compared to the survival ones (0.84 ± 0.23). While as a prognostic tool for the prediction of bad prognosis 
and mortality among severe COVID‑19 patients, our results showed that the serum hsa‑mir‑18a‑5p expression level 
is a good sensitive and specific marker. By using bioinformatics tools, our results revealed that the decreased hsa‑mir‑
18a‑5p expression level may have a crucial role in COVID‑19 pathogenesis and severity through decreased immu‑
nological responses (interpreted as lymphopenia) or increased inflammation (interpreted as increased serum levels 
of IL‑6, CRP, LDH).

Conclusion Taken together, the decreased expression level of hsa‑mir‑18a‑5p could be a bad prognostic marker 
and therapeutic overexpression of hsa‑mir‑18a‑5p could be a novel approach in the treatment of COVID‑19 disease.
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Introduction
Due to the high prevalence and long incubation periods, 
the severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) has infected millions of individuals glob-
ally, causing the coronavirus disease 2019 (COVID-19) 
pandemic [1]. It was first emerged in Wuhan, China in 
December 2019 and declared a global pandemic by WHO 
on 11 March 2020 [2, 3]. It has become a catastrophic 

public health crisis affecting many people as of January 
09, 2023, there have been 668,820,532 confirmed cases, 
and 6,714,775 deaths were reported in more than 229 
countries [4]. The clinical presentation of COVID-19 
varies so much from asymptomatic to milder symptoms, 
including dry cough, fever, myalgia, dyspnea, sore throat, 
and headache, or even to severe and emergent manifes-
tations including chest pain, confusion, hypoxia, pneu-
monia, and other complications requiring intensive care 
unit (ICU) admission and mechanical ventilation [5]. 
The clinical guidelines of WHO define “severe COVID-
19” as patients with clinical signs of pneumonia (fever, 
cough, dyspnea, and fast breathing) accompanied by one 
of the following: severe respiratory distress; O2 satura-
tion (SpO2) ≤ 90% in room air; or respiratory rate > 30 
breaths/min [6]. Till now, the precise determinants of 
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severe COVID-19 are not known, but it primarily maybe 
host factors rather than viral genetic mutations [7]. The 
number of COVID-19 patients is continually increas-
ing worldwide and the management in ICU has become 
a major challenge; therefore, early recognition of severe 
forms of COVID-19 is very necessary for triaging of 
COVID-19 patients [8].

MicroRNAs (miRNAs) are a class of highly conserved 
endogenous small (18–22 nt) noncoding single-stranded 
RNA molecules widely found in plants, animals, and 
some viruses. They have an essential role in post-tran-
scriptional regulation of gene expression by targeting 
the mRNAs of protein-coding genes [9]. MiR-18a-5p is 
located at chromosome 13q31.3 and belongs to Mirc1 
locus, better known as the miR-17–92 cluster, encodes 
six miRNAs (miR-17-5p, miR-18a-5p, miR-19a-3p, 
miR-19b-3p, miR-20a-5p, and miR-92a-3p); which has 
important roles in cell proliferation and differentiation, 
inflammation, immunity and immunological process 
[10, 11]. It was reported that miRNAs have been shown 
to have a role in viral infections as viruses can induce 
the up- or downregulation of various host miRNAs to 
elude the host’s immune system [12]. It was found that 
miR-18a-5p was reduced in bleomycin-treated pleural 
mesothelial cells (PMCs) which in turn contributes to 
epithelial-mesenchymal transition (EMT) of PMCs via 
upregulation of its target, TGF-β receptor II (TGF-βRII), 
which mediates signaling leading to sub-pleural pulmo-
nary fibrosis [13]. Therefore the aim of the present study 
was to measure the expression level of hsa-mir-18a-5p 
in the sera of unvaccinated severe COVID-19 Egyptian 
patients admitted to ICU and then examine the target 
genes of has-mir-18a-5p using bioinformatics online 
tools to investigate its role in the pathogenesis and sever-
ity of COVID-19 disease also its correlations with other 
clinical variables in severe COVID-19 patients.

Patients and methods
Ethics statement
The current study was approved by the ethics committee 
of the Faculty of Medicine, Port-Said University, Egypt 
(ERN MED (23/04/2020)S.no(5)MED). Informed consent 
was obtained from all patients.

Human subjects and data collection
The current study was conducted on 180 unvaccinated 
severe COVID-19 patients recruited from the isolation 
hospitals in Port-Said, Egypt. Sputum and throat swab 
specimens (for qPCR for SARS-Cov-2 RNA test) and 
blood samples were collected from all patients. Labora-
tory tests were conducted at admission, including a com-
plete blood count, liver function tests (ALT and AST), 
kidney function tests (urea and creatinine), CRP, ferritin, 

IL-6, D-dimer, PCT, and LDH. Also, chest CT scans are 
made for all patients. The severity of COVID-19 was 
graded according to Suspected COVID-19 Cases Man-
agement in Triage Hospitals by the Ministry of Health 
and Population of Egypt. Our Severe COVID-19 patients 
were defined as patients with respiratory distress, rest-
ing oxygen saturation ≤ 90%, respiratory failure requiring 
mechanical ventilation, or failure of other organs requir-
ing ICU admission.

Data from severe patients were collected from the lat-
est laboratory tests prior to physicians making the clinical 
diagnosis of severe disease. Demographic data, hospitali-
zation time, medical history, oxygen saturation, respira-
tory rate, oxygen supply, laboratory findings, and thorax 
tomography of the patients were obtained from the hos-
pital’s electronic information system retrospectively. All 
patients were treated by meropenem (1 gm/8 h intrave-
nous), levofloxacin (500 mg vial/24 h, intravenous), line-
zolid (600 mg vial/8 h, intravenous), Enoxaparine calcium 
(therapeutic dose, subcutaneous), methylprednisolone 
sodium succinate (1 gm every 24 h for 3 days then 125 
mg every 12 h), tocilizumab (if needed, 8 mg/kg), and 
remdesivir (loading dose 400 mg first day, then 200 mg 
for 5 days).

Determination of serum miR‑18a expression level 
by RT‑qPCR
MiRNA extraction and cDNA preparation
The miRNA was extracted from the sera of all patients 
using miRNeasy Mini kit (cat # 217004, Qiagen, USA) 
according to the manufacturer’s instructions. The purity 
and the concentration of the purified miRNA were 
detected using spectrophotometer nano-drop (Quawell, 
Q-500, Scribner, USA) and stored at − 80 °C till further 
assessments. To synthesize cDNA, miRNA was reverse 
transcribed using MiScript II reverse transcription kit 
(cat # 218160, Qiagen, USA) according to manufacturer’s 
instructions and stored at − 20 °C till performing qPCR.

Quantitative real‑time PCR (qPCR)
Quantitative real-time PCR was performed using 
miScript primer assay (cat # 218300, Qiagen, USA) 
for miR-18a (Hs_miR-18a_2 miScript Primer Assay, 
MS00031514); the reaction was carried out using MiS-
cript SYBR Green PCR kit (cat # 218073, Qiagen, USA). 
Also, RNU6–2 (Hs_RNU6-2_11 miScript Primer Assay, 
MS00033740) was used as an endogenous control to nor-
malize the expression levels of the investigated miRNAs; 
the primer sequences are listed in Table  1. The qPCR 
cycling conditions were as follows: 95 °C for 10 min, fol-
lowed by 40 cycles of 95 °C for 15 s, 55 °C for 30 s, and 
72 °C for 30 s in which fluorescence was acquired and 
detected by Stratagene Real-time PCR system (Max3005P 
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QPCR system, Stratagene, Agilent biotechnology, USA). 
The relative expression levels of the investigated miR-
NAs were evaluated using the  2−ΔΔCq method described 
by Livak and Schmittgen [14]. A 2-fold increased (≥ 2) 
or decreased (≤ 0.5) value was considered mRNA overex-
pression or downregulation, respectively.

Bioinformatics analysis
To examine the target genes of has-mir-18a-5p, different 
online databases were used, miRDB (https:// mirdb. org/ 
mirdb/ index. html), TargetScan (https:// www. targe tscan. 
org/ vert_ 80/), DIANA-TarBase(https:// diana lab.e- ce. uth. 
gr/ html/ diana/ web/ index. php?r= tarba sev8% 2Find ex/), 
miRwalk (http:// mirwa lk. umm. uni- heide lberg. de/), miR-
Net (https:// www. mirnet. ca/ miRNet/ home. xhtml/).

Statistical analysis
Statistical analysis was performed using IBM SPSS soft-
ware (version 23.0; IBM Corp., Armonk, NY, USA), 
and data were presented as means ± S.D. One-way 
ANOVA was used to determine statistically significant 
differences between group’s means and Pearson’s cor-
relation coefficient was used to determine significant 
correlations of serum has-mir-18a-5p expression level 
with other clinical parameters. The receiver operating 
characteristic curve (ROC curve) was used to calculate 
the area under the curve (AUC), sensitivity, and speci-
ficity of serum has-mir-18a-5p expression level as a 
biomarker for the detection of bad prognosis and dete-
rioration of severe COVID-19 disease. The criterion for 
significance was p < 0.05.

Results
Demographic and biochemical data of COVID‑19 patients
The present study included 180 severe COVID-19 patients; 
108 males and 72 females; with mean age 67.4 ± 9.6 years; 
oxygen saturation 86.32 ± 4.05%; respiratory rate 26.83 ± 
3.17 cycle/min; and 74 (41.1%) patients died during hos-
pitalization; the clinical and biological data of severe 
COVID-19 patients are summarized in Table 1. The results 
of current study revealed a highly significant (p < 0.001) 
increase in the levels of CRP (76.29 ± 25.50), IL-6 (383.49 
± 213.84), PCT (0.82 ± 0.35), and LDH (480.43 ± 96.08) in 
the sera of nonsurvival severe COVID-19 patients when 
compared to survival severe COVID-19 patients (59.81 
± 16.69; 63.75 ± 44.71; 0.19 ± 0.14 and 273.54 ± 99.68; 

respectively). Also, the blood neutrophils percentage 
(78.61 ± 6.13) was significantly (p < 0.001) increased while 
lymphocytes percentage (11.63 ± 5.35) was significantly 
(p < 0.001) decreased among nonsurvival severe COVID-
19 patients as compared with survival severe COVID-19 
patients (69.12 ± 14.62 and 19.91 ± 4.94; respectively); as 
shown in Table 2.

Serum has‑mir‑18a‑5p expression level and receiver 
operating characteristic (ROC) curves analysis
Our results showed that serum has-mir-18a-5p had a 
differential expression pattern, as it was found to be 
highly significantly (p < 0.001) decreased in nonsur-
vival COVID-19 patients (0.38 ± 0.26) when compared 

Table 1 Primer sequences for quantitative RT‑PCR analysis

Gene Primer sequence

miR‑18a 5′‑UAA GGU GCA UCU AGU GCA GAUAG‑3′
RNU6B 5′‑CUC GCU UCG GCA GCA CAU AUA CUA A‑3′

Table 2 Clinicopathological characteristics and CT findings of 
severe COVID‑19 patients

*Significant at p value < 0.05

**Highly significant at p value < 0.001
a Significant difference versus survival severe COVID-19 (control) group

Variable

Group Severe COVID‑19 patients

Survivals 
(n = 106)
(Mean ± SD)

Non‑survivals 
(n = 74)
(Mean ± SD)

Age (years) 66.3 ± 10.1 68.6 ± 8.9

Gender (n (%))

 Male 59 (55.7%) 49 (66.2%)

 Female 47 (44.3%) 25 (33.8%)

Urea (mg/dl) 35.42 ± 9.83 40.11 ± 9.55

Creatinine (mg/dl) 1.06 ± 0.27 1.15 ± 0.31

AST (U/L) 35.30 ± 13.94 42.28 ± 21.88*a

ALT (U/L) 34.67 ± 19.23 36.21 ± 20.89

WBCs (10^3/μl) 12.53 ± 4.61 13.98 ± 5.87

Neutrophils (%) 69.12 ± 14.62 78.61 ± 6.13*a

Lymphocytes (%) 19.91 ± 4.94 11.63 ± 5.35 *a

CRP (mg/dl) 59.81 ± 16.69 76.29 ± 25.50**a

Ferritin (ng/ml) 425.97 ± 142.49 453.25 ± 161.11

IL‑6 (pg/dl) 63.75 ± 44.71 383.49 ± 213.84**a

D‑dimer (mg/L) 1.99 ± 0.34 2.24 ± 0.96

PCT (ng/ml) 0.19 ± 0.14 0.82 ± 0.35**a

LDH (U/L) 273.54 ± 99.68 480.43 ± 96.08**a

O2 saturation (%) 91.47 ± 3.91 90.18 ± 4.0

Respiratory rate (cycle/min) 26.97 ± 3.04 26.86 ± 2.87

Oxygen supply (n (%))

 CPAP 49 (46.2%) 42 (56.7%)

 NRM 57 (53.8%) 32 (43.3%)

Chest CT findings (n (%))

 CORADs 4 28 (26.4%) 35 (47.3%)

 CORADs 5 78 (73.6%) 39 (52.7%)

https://mirdb.org/mirdb/index.html
https://mirdb.org/mirdb/index.html
https://www.targetscan.org/vert_80/
https://www.targetscan.org/vert_80/
https://dianalab.e-ce.uth.gr/html/diana/web/index.php?r=tarbasev8%2Findex/
https://dianalab.e-ce.uth.gr/html/diana/web/index.php?r=tarbasev8%2Findex/
http://mirwalk.umm.uni-heidelberg.de/
https://www.mirnet.ca/miRNet/home.xhtml/
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to the survival ones (0.84 ± 0.23); as shown in Fig.  1A. 
The sensitivity and specificity as biomarker of serum 
has-mir-18a-5p expression level for the prediction of 
bad prognosis and mortality among severe COVID-19 
patients were evaluated by using ROC curve analysis. 
Our results showed that it is a good biomarker that could 
predict a bad prognosis of severe COVID-19 patients, 
with AUC 0.91, 92.7% sensitivity, and 84.5% specificity; as 
shown in Fig. 1B.

Correlation of serum has‑mir‑18a‑5p expression level 
with clinical variables in severe COVID‑19 patients
Data recorded in Table 3 shows the correlation matrix of 
serum has-mir-18a-5p expression level with the different 
clinical parameters in this study. It was found that it was 
highly significantly positively correlated (p < 0.001) with 
lymphocyte percentage, while it was highly significantly 
negatively correlated (p < 0.001) with neutrophils per-
centage, CRP, IL-6, PCT, and LDH; as shown in Table 3.

Bioinformatics analysis
Different online databases were used to investigate 
the target genes of hsa-mir-18a5p. Different numbers 
of target genes were obtained, miRDB (382), TargetS-
can (321), DIANA-TarBase (1053), miRwalk (222), and 
miRNet (262); as shown in Fig. 2A. To visualize the tar-
get genes of has-mir-18a-5p as a figure, authors used 
miRwalk database (Fig. 2B), while to predict its possible 
roles or pathways in the COVID-19 pathogenesis and 

severity, miRNet database was used. According to miR-
Net database, our results showed that hsa-mir-18a5p 
has a role in the adaptive immune system by targeting 
CANX, FCGR2B, PSMB5, PTEN, RAP1A,UBC, EC24B, 
DCTN2, TNRC6B, PHLPP1, SEC61A1, DCTN5, and 

Fig. 1 Serum hsa‑mir‑18a‑5p expression level among severe COVID‑19 patients: A relative gene expression of hsa‑mir‑18a‑5p in nonsurvival 
and survival severe COVID‑19 patients. B ROC curve of serum hsa‑mir‑18a‑5p expression level in discrimination between survival and non‑survival 
severe COVID‑19 patients

Table 3 Correlations of serum has‑mir‑18a‑5p with different 
parameters among severe COVID‑19 patients

*Significant at p value < 0.05

**Highly significant at p value < 0.001

miR

Variable has‑mir‑18a‑5p

r p value

Urea (mg/dl) − 0.14 0.07

Creatinine (mg/dl) 0.09 0.223

AST (U/L) 0.03 0.63

ALT (U/L) − 0.13 0.08

WBCs (10^3/μl) − 0.21 0.79

Neutrophils (%) − 0.27 0.000**
Lymphocytes (%) 0.29 0.000**
CRP (mg/dl) − 0.31 0.000**
Ferritin (ng/ml) − 0.06 0.39

IL‑6 (pg/ml) − 0.56 0.000**
D‑dimer (mg/L) 0.001 0.99

PCT (ng/ml) − 0.23 0.002**
LDH (U/L) − 0.54 0.000**
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RICTOR genes; as shown in Fig. 3A. Also it has signal-
ing events of B cell receptor (BCR) by targeting PSMB5, 
PTEN, UBC, TNRC6B, PHLPP1, and RICTOR genes; 
as shown in Fig.  3B. Moreover, hsa-mir-18a5p medi-
ated Class I MHC antigen processing and presentation 
through CANX, PSMB5, UBC, SEC24B, and SEC61A1 
genes; as shown in Fig. 3C. Furthermore, it has a crucial 
role in interferon gamma signaling by targeting IRF2, 
MID1, and SP100 genes; as shown in Fig.  3D. Other 
than the immunological responses, hsa-mir-18a5p has 
a role in inflammation (by targeting BCL2 and TXNIP 
genes; as shown in Fig. 4).

Discussion
It is well known that miRNAs play an important role in 
the posttranscriptional control of gene expression that 
is dysregulated in different physiological pathophysi-
ological processes, such as metabolism, growth, cell dif-
ferentiation and development, apoptosis, inflammation, 
and cell signaling [15]. Besides, the role of miRNAs in 
the pathogenesis of lung disease has been recognized, 
as Dakhlallah et  al. [16] reported that downregulation 
of miR-17∼92 contributes to the pathogenesis of pul-
monary fibrosis, and also miR-18a levels are extraor-
dinarily decreased in the lung of human IPF patients 
[16, 17]. However, the mechanisms involved in the 
regulatory effects of miRNA in pulmonary fibrosis 
have not been revealed. Therefore, we aimed to meas-
ure the expression levels of has-mir-18a-5p in the sera 
of unvaccinated severe COVID-19 Egyptian patients 

admitted to ICU to investigate its roles in the pathogen-
esis and severity of COVID-19 disease also its correla-
tions with other clinical variables in severe COVID-19 
patients. In our previous work, we measured the levels 
of serum IP-10, SAA, and sialic acid and circulating 
plasma has-mir-155-5p in positive COVID-19 patients 
to explore their clinical values and significance in dis-
crimination between moderate and severe COVID-19 
infection and predicting the severity and prognosis of 
COVID-19 disease [18–21]. Here, our results revealed 
that the expression level of serum has-mir-18a-5p 
was significantly decreased in nonsurvival COVID-19 
patients when compared to the survival ones (Fig. 1A). 
As consistent with our results; Li et  al. found that the 
level of miR-18a is down-expressed in the peripheral 
blood from human patients with COVID-19 [22], also 
other several studies reported miR-18a down expres-
sion in asthma patients [23, 24]. Moreover, Ventura 
et al. [25] reported that the loss-of-function of the miR-
17-92 cluster resulted in smaller embryos and imme-
diate postnatal death of all animals due to severely 
hypoplastic lungs of mice lacking miR-17-92, indicat-
ing the vital role of miR-18a in the proper function 
of lungs. Several studies reported the diagnostic and 
prognostic significance of serum mir-18a-5p [26–28]. 
Therefore, the current study also aimed to elaborate 
and assess the potential role of serum mir-18a-5p as a 
prognostic biomarker for the prediction of bad prog-
nosis and mortality among severe COVID-19 patients. 
Our results showed that it is a good biomarker that 

Fig. 2 Network analysis of hsa‑mir‑18a‑5p target gene networks: A numbers of target genes of hsa‑mir‑18a‑5p. B Visualization of target genes 
of hsa‑mir‑18a‑5p using miRWalk online database
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could predict the bad prognosis of severe COVID-19 
patients, with AUC 0.91, 92.7% sensitivity, and 84.5% 
specificity (Fig. 1B).

The innate immune response to SARS-CoV-2 Anti-
viral innate immunity has several humoral compo-
nents, including mannose-binding lectin, interferons, 
chemokines, B lymphocytes, natural killer cells, and 
other innate lymphoid cells (ILCs) and gamma delta T 
cells, which generally limit the spread of viral infection by 
cytotoxic action on target cells, cytokine production, and 
induction of an adaptive response [29]. By using bioin-
formatics online tools, it was found that hsa-mir-18a-5p 
targets many genes, which may be involved in many 
pathways such as immunological responses (Fig. 3A–D). 
Therefore, as the expression level of hsa-mir-18a-5p 

decreased, these immunological responses such as 
adaptive immune responses (Fig.  3A), signaling events 
of B cell receptor (Fig. 3B), class I MHC mediated anti-
gen processing and presentation (Fig.  3C) and inter-
feron-gamma signaling (Fig.  3D) were decreased. These 
observations are in line with the relative lymphopenia 
reported in severe COVID-19 and also in our patients. It 
is well known that hsa-mir-18a-5p regulates the immu-
nological responses, especially in respiratory diseases as 
in a study about influenza A, miR-18a-5p was found to 
be involved in the regulation of the pulmonary innate 
immune response [30]. Moreover, several viruses, includ-
ing SARS-CoV-2 have been reported to enhance TGF-β 
signaling, which is known to induce fibrosis and sup-
press adaptive immunity through a modulation of TGF-β 

Fig. 3 Target genes of hsa‑mir‑18a‑5p in immunological responses: A adaptive immune system. B Signaling events of B cell receptor (BCR). C Class I 
MHC mediated antigen processing and presentation. D Interferon gamma signaling
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signaling, via the surface receptors and canonical SMAD 
and MAPK pathways regulated by hsa-mir-18a-5p regu-
lating adaptive immune responses [31].

The pathogenesis of COVID-19 is complex, but it 
can be conceptually described using typical models for 
the three main pathological processes associated with 
inflammation—local manifestations of classical general 
(canonical) inflammation, acute systemic inflammation, 
and chronic systemic inflammation of low intensity [32]. 
Our bioinformatics analysis results showed that hsa-mir-
18a5p has an inhibitory effect on inflammation (Fig.  4), 
which in turn may play crucial roles in COVID-19 patho-
genesis and severity.

As consistent with our results, it was indicated that 
miR-18a-5p mimic significantly reduced inflammatory 
factors including IL-6, IL-8, IL-1β, and tumor necrosis 
factor (TNF)-α release, decreased the degranulation rate 
and histamine release rate of cells [33], this may explain 
the increased serum level of IL-6 in our severe COVID-
19 patients, especially the nonsurvival ones. Moreover, 
Geng et al. [34] observed that has-mir-18a-5p upregula-
tion prevents endothelial-mesenchymal transition and 
cardiac fibrosis induced by high glucose concentration, 
by targeting NOTCH2 gene, which regulates cellular 
phenotype. Our results also revealed that has-mir-18a-5p 
showed very significant correlations with the other 
parameters by Pearson correlation analysis, which sug-
gested that it was a significant factor associated with the 
severity of patients with COVID-19.

There are some limitations that need to be addressed 
regarding the present study. First of all, the population 
was only from Egypt, which reduces the possibility of 
confounding by ethnicity; therefore, these results should 

be interpreted with caution. Second, given the limited 
size of the study and additional large-scale studies are 
needed to confirm this finding. Finally, serum levels or 
gene expression levels of target genes of has-mir-18a-5p 
should be measured concurrently with has-mir-18a-5p 
levels in the same patients’ samples to ensure their 
interactions.

Conclusion
Finally, by using survival severe COVID-19 patients 
as a control group our results showed that the expres-
sion level of hsa-mir-18a-5p was significantly decreased 
among the nonsurvival severe COVID-19 patients. While 
as a prognostic tool for the prediction of bad prognosis 
and mortality among severe COVID-19 patients, our 
results showed that the serum hsa-mir-18a-5p expres-
sion level is a good sensitive and specific marker. By 
using bioinformatics tools, our results revealed that the 
decreased hsa-mir-18a-5p expression level may have 
a crucial role in COVID-19 pathogenesis and severity 
through decreased immunological responses (interpreted 
as lymphopenia) or increased inflammation (interpreted 
as increased serum levels of IL-6, CRP, LDH). This pro-
vides proof of concept that the therapeutic overexpres-
sion of hsa-mir-18a-5p could be a novel approach in the 
treatment of COVID-19 disease.
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