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Abstract 

Background Cryptococcus neoformans is a fungal pathogen that can cause serious meningoencephalitis in individu‑
als with compromised immune systems due to HIV/AIDS (human immunodeficiency virus/acquired immunodefi‑
ciency syndrome), liver cirrhosis, and transplantation. Mannoproteins (MPs), glycoproteins in the C. neoformans cap‑
sule, crucially impact virulence by mediating adhesion to lung cells and modulating immune response via cytokine 
induction and phagocytosis influence. Therefore, creating a vaccine that can generate targeted antibodies to fight 
infection and prevent fungal illnesses is essential.

Results This research aims to create a unique, stable, and safe vaccine through bioinformatics methodologies, 
aiming at epitopes of T and B cells found in the MP of C. neoformans. Based on toxicity, immunogenicity, and anti‑
genicity, this research predicted novel T cells (GNPVGGNVT, NPVGGNVTT, QTSYARLLS, TSVGNGIAS, WVMPGDYTN, 
AAATGSSSSGSTGSG, GSTGSGSGSAAAGST, SGSTGSGSGSAAAGS, SSGSTGSGSGSAAAG, and SSSGSTGSGSGSAAA) 
and B cell (ANGSTSTFQQRYT GTY TNGDGSLGTWTQGETVTPQTAYSTPATSNCKTYTSVGNGIASLALSNAGSNSTAAATNS‑
SSGGASAAATGSSSSGSTGSGSGSAAAGSTAAASSSGDSSSSTSAAMSNGI, HGATGLGNPVGGNVTT, TMGPTNPSEPTLGTAI, 
GNPVGGNVTTNATGSD, and NSTAAATNSSSGGASA) epitopes for a multiple‑epitope vaccine and constructed a vaccine 
subunit with potential immunogenic properties. The present study used four linkers (AAY, GPGPG, KK, and EAAAK link‑
ers) to connect the epitopes and adjuvant. After constructing the vaccine, it was confronted with receptor docking 
and simulation analysis. Subsequently, the vaccine was cloned into the vector of Escherichia coli pET‑28a ( +) by liga‑
tion process for the expression using the SnapGene tool, which confirmed a significant immune response. To assess 
the constructed vaccine’s properties, multiple computational tools were employed. Based on the MP sequence, 
the tools evaluated the antigenicity, immunogenicity, cytokine‑inducing capacity, allergenicity, toxicity, population 
coverage, and solubility.

Conclusion Eventually, the results revealed a promising multi‑epitope vaccine as a potential candidate for address‑
ing global C. neoformans infection, particularly in immunocompromised patients. Yet, additional in vitro and in vivo 
investigations are necessary to validate its safety and effectiveness.
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Background
Cryptococcus neoformans is a fungal pathogen that can 
cause severe meningoencephalitis in immunocompro-
mised individuals, for instance, people with HIV/AIDS 
(human immunodeficiency virus/acquired immuno-
deficiency syndrome), liver cirrhosis, and transplant 
recipients [1]. The CDC (Centers for Disease Control 
and Prevention) reported that healthy individuals are 
unlikely to contract C. neoformans infections. However, 
the pathogen is responsible for many cases of cryptococ-
cal meningitis in individuals with HIV/AIDS. The CDC 
estimated approximately 152,000 cases of cryptococcal 
meningitis eventuate annually worldwide among indi-
viduals with HIV/AIDS, with nearly 112,000 resulting in 
death. Moreover, Cryptococcus is now the leading cause 
of meningitis in adults in sub-Saharan Africa [2]. Zhao 
et al. (2023) strengthened the claim by noting that while 
C. neoformans infections are rare in individuals with 
healthy immune systems; they can cause significant ill-
ness in those with HIV/AIDS [3].

Although C. neoformans is not typically considered 
a cytotoxic fungal pathogen, there is ample evidence to 
suggest that it can cause damage to host cells and tissues. 
Symptoms of infection with C. neoformans comprise 
headache, fatigue, fever, and muscle aches, and in severe 
cases, the infection can progress to meningitis, which can 
be fatal [4, 5]. C. neoformans typically propagate through 
the respiration of aerosolized basidiospores and disperse 
to the central nervous system (CNS), leading to menin-
goencephalitis [6, 7]. Within the lungs, alveolar mac-
rophages typically phagocytose C. neoformans cells. The 
disease commonly spreads through contact with fungus 
associated with various bird species, particularly pigeon 
feces and bat guano. Infection may also spread through 
contact with an infected individual [8–10].

Treatment for C. neoformans infection typically 
involves prescription antifungal medication for a mini-
mum of 6 months and possibly longer depending on the 
severity and location of the infection [11]. Asympto-
matic infections or mild-to-moderate pulmonary infec-
tions are commonly treated with fluconazole. Serious 
lung infections in the CNS are initially treated with 
amphotericin B combined with flucytosine, followed by 
fluconazole treatment for at least ten additional weeks 
[11, 12]. Treatment of invasive C. neoformans disease 
typically involves flucytosine, amphotericin B, and dif-
ferent azoles. However, treatment failures may still 
occur due to direct antifungal drug resistance [13–15]. 
While antifungal drug resistance is uncommon among 
clinical isolates of C. neoformans, it has been reported. 
Additionally, using antifungal drugs in long-term sup-
pressive regimens has raised concerns about drug 

resistance development [16, 17]. However, a survey 
conducted at a university hospital between 1987 and 
1994 to assess the susceptibility patterns of clinical iso-
lates of C. neoformans found no evidence of the emer-
gence of resistance, thus alleviating these concerns [18].

No vaccines are currently available for fungal infec-
tions, but ongoing research aims to develop vaccines, 
immunotherapy, and new drugs [19, 20]. Vaccines can 
stimulate the immune response and produce antibod-
ies against fungal antigens, protecting against infec-
tion [21–26]. Fungal vaccines face limitations due to 
the commensal nature of fungi, their ability to estab-
lish clinical latency, and the lack of common antigens 
expressed in multiple genera of fungi [20]. However, 
fungal vaccines can be classified into different types 
based on their composition: whole organism, subunit, 
and conjugate. Antifungal drugs usually target fungal-
specific structures like the cell membrane and cell wall, 
which are necessary for the survival of the fungus but 
not human cells. The fungal cell wall contains manno-
proteins (MPs), β-glucans, and chitin/chitosan, which 
are essential for growth and survival and are targeted by 
antifungal drugs and the immune system [20, 27–31].

According to Ghanegolmohammadi et al. (2021) [32], 
MPs are predominantly found in the outer part of the 
fungal cell wall. They are essential for shape, cell rigid-
ity, ion exchange, metabolism, and interactions with 
host defense mechanisms [32]. MP mutants in Saccha-
romyces cerevisiae were studied via high-dimensional 
morphological phenotyping. Yet, it remains unclear 
whether fungi can survive without MPs. Meanwhile, 
MPs are assembled and modified; they play a signifi-
cant role in fungal pathogens’ virulence and/or cell 
wall integrity. The fungal cell wall also contains β-(1,6)-
glucan, β-(1,3)-glucan, and chitin [29, 33]. Interestingly, 
MPs are unique to fungi and not present in humans 
[34, 35]. MPs possess various advantageous character-
istics, including high conservation, abundance, immu-
nogenicity, low risk of resistance development, and 
enhanced recognition by the host immune system [36]. 
These attributes collectively underscore the significant 
potential of MPs as a compelling target for vaccine 
development.

This study aimed to design a hypoallergic, non-toxic, 
and safe vaccine against C. neoformans using artificial 
intelligence. The vaccine was constructed of multi-
ple antigenic, non-allergenic, immunogenic, cytokine 
inducers, and non-toxic B and T cell epitopes from 
the MP of the C. neoformans. The ensuing vaccine was 
analyzed using bioinformatic tools to assess its interac-
tion with immune inducer receptors for activating the 
immune system, which was further examined for its 
immunogenic properties in real-world scenarios.
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Fig. 1 Outline for the in silico construction of the vaccine against C. neoformans and its subsequent validation
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Methods
Figure  1 depicts the methodology employed for the in 
silico construction of the vaccine and its subsequent vali-
dation against C. neoformans.

Protein sequence retrieval and multiple sequence 
alignment
The immunoreactive MP sequence of C. neoformans 
was obtained from NCBI with accession number 
XP_567104.1 and analyzed using NCBI-BLAST and 
COBALT to generate a multiple sequence alignment and 
identify conserved regions.

Antigenic proteins
The antigenicity of the multiple sequence alignments of 
MP of C. neoformans was estimated using the VaxiJen 
v2.0 server [37–39].

Physiochemical properties
The ExPASy-ProtParam online server [40, 41] evaluated 
the physiochemical properties of the selected sequence 
of the MP of C. neoformans. It calculates different physi-
cal and chemical parameters for protein sequences, 
including theoretical isoelectric point, molecular weight, 
extinction coefficients, grand average of hydropathicity, 
aliphatic index, instability index, positively and negatively 
charged residues, and estimated half-life.

T cell and B cell epitope and feature profiling
The IEDB bioinformatics database tool [42] was used 
for T cell and B cell (LBL) epitope prediction, using dif-
ferent prediction methods such as Ab  initio, homology-
based, LBL epitope, T cell epitope, and structure-based 
prediction.

CTL binding epitope prediction
The study used the CTL (cytotoxic T lymphocyte) bind-
ing epitopes prediction server to predict conserved CTL 
binding epitopes of the MP sequence of C. neoformans 
using the NetMHCpan EL 4.1 method [43]. The obtained 
epitopes were evaluated using VaxiJen v2.0, ToxinPred2 
[44], immunogenicity [45], and AllerTOP v2.0 [46] serv-
ers to predict their antigenicity, toxicity, immunogenicity, 
and allergenicity, respectively.

HTL binding epitope prediction
The conserved HTL (helper T lymphocyte) T cell bind-
ing epitopes of the MP of C. neoformans were predicted 
using the HTL binding prediction server with the IEDB 
recommended 2.22 method [42]. Each predicted epitope 
was evaluated for antigenicity, toxicity, IFN (Interferons)-
Gamma inducing epitopes, interleukins (IL)-4 inducing 
epitopes, IL10 inducing epitopes, and allergenicity using 

various online servers, including VaxiJen v2.0, Toxin-
Pred2, INFepitope [47], IL4Pred [48], IL-10Pred [49], and 
AllerTOP v2.0, respectively.

LBL binding epitope prediction
The conserved LBL epitopes of the MP of C. neofor-
mans were predicted using the antibody epitope predic-
tion server using two methods: BepiPred linear epitope 
prediction 2.0 and Emini surface accessibility prediction 
[50] and an artificial neural network-based LBL epitope 
prediction server [51, 52]. VaxiJen v2.0, ToxinPred2, and 
AllerTOP v2.0 servers were used to predict the antigenic-
ity, toxicity, and allergenicity of each predicted epitope.

Population coverage of the epitopes
The population coverage calculation tool estimates 
the percentage of a population covered by a given set 
of epitopes based on their conservation across differ-
ent individuals. It uses data from the IEDB’s database 
of experimentally determined epitopes and population 
genetic studies. The Israeli population was selected for 
calculating the population coverage of individual MHC 
class-I and class-II epitopes using IEDB’s population cov-
erage [53].

Epitope conservancy analysis
The conservancy of selected antigenic epitopes from the 
MP of C. neoformans was analyzed using the Epitope 
Conservancy Analysis tool [54].

Vaccine construction
The constructed vaccine for C. neoformans consisted of 
linked antigenic epitopes of CTL, HTL, and LBL, as well 
as an adjuvant linked together by AAY, GPGPG, KK, and 
EAAAK linkers [55–57]. The vaccine sequence began 
with a 50S ribosomal protein L7/L12 adjuvant (UniProt 
ID: P0A7K2) and ended with a 6-His tag [58].

Physiochemical parameters, antigenicity, allergenicity, 
toxicity, and solubility of vaccine construct
The physicochemical properties of the vaccine were eval-
uated using the ExPASy-ProtParam online server [40, 41] 
physical and chemical parameters. The vaccine’s anti-
genicity, allergenicity, and toxicity were evaluated using 
VaxiJen 2.0, AllerTop 2.0, and Toxinpred2 online servers, 
respectively. SoluProt [59] was used to predict the soluble 
protein expression in E. coli.

Secondary and tertiary structures modeling
The secondary structure parameters of the C. neoformans 
vaccine construct were predicted using the SOPMA 
online server [60] with default settings, and the graphical 
representation was obtained. The tertiary structure was 
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predicted using ColabFold [61], which uses AlphaFold2 
and Alphafold2-multimer and generates sequence tem-
plates through HHsearch and MMseqs2.

Refinement and verification of 3D vaccine
The 3D structure of the vaccine construct of C. neofor-
mans was refined using GalaxyRefine [62] online web 
server, which repacks and rebuilds the side chains to relax 
the structure by molecular dynamics simulation. The 
refined structure was then validated using PROCHECK, 
ERRAT, and Verify3D. PROCHECK [63] analyzes res-
idue-by-residue and overall structure geometry to build 
the Ramachandran Plot. ERRAT examines non-covalent 
interactions among diverse atom types and graphs the 
error function values against a sliding window of nine 
residues. Finally, verify3D categorizes residues into struc-
tural classes and compares the outcomes with established 
high-quality structures.

Discontinuous and linear B cell epitope prediction
The IEDB server’s ElliPro tool [64] confirmed the pres-
ence of discontinuous and linear B cell epitopes in the 
vaccine.

Molecular docking and simulation
The vaccine’s binding affinity with Toll-like receptors 
(TLR)-2, TLR4, and TLR6 was evaluated using Clus-
Pro 2.0 [65–68]. The 3D structures of TLR2, TLR4, and 
TLR6 were obtained from the Protein Data Bank (PDB) 
and AlphaFold protein structure database. Ligands and 
heteroatoms were removed from the TLR proteins and 
uploaded to the ClusPro 2.0 server with the vaccine as a 
ligand for protein–protein docking. The resulting com-
plexes were subjected to molecular dynamics simulation 
using the iMODS [69, 70] server to analyze the NMA 
for determining collective motion in internal coordi-
nates and torsional angles of the vaccine-TLR complexes. 
Essential dynamics were utilized for protein stability and 
motion prediction based on various factors.

Codon optimization and in silico cloning
In order to analyze the expression of the vaccine in E. coli 
K12, JCAT [71] was utilized to adapt codons for efficient 
ribosome binding, transcription termination, and restric-
tion enzyme cleavage site. SnapGene 4.2 [72, 73] soft-
ware was used for cloning, introducing SgrAI and HpaI 
restriction sites to the vaccine sequence and then insert-
ing them into the E. coli pET28a( +) expression vector.

mRNA secondary and tertiary structure prediction
We used the Transcription and Translation Tool [74] to 
predict the secondary and tertiary structures of the vac-
cine mRNA and convert the optimized DNA sequence 

to RNA sequence. The mRNA secondary structure was 
then predicted using the RNAfold web server [75–77] for 
thermodynamic analysis and minimal free energy score. 
Finally, we utilized the 3dRNA/DNA [78] web server to 
predict the 3D structure of the single-stranded mRNA.

Immune simulation analysis
The online antigen-based immune simulator C-ImmSim 
[79, 80] was used to assess the immunogenic profile of 
the vaccine. The prediction of immune reactions by this 
web server is based on a hybrid approach that com-
bines the position-specific scoring matrix (PSSM) with 
a machine learning algorithm. The vaccine was adminis-
tered in three doses of 1000 antigens with an 8-week gap 
between doses. The doses were given at time-step 168, 
504, and 1008 (representing 8 h in real life), respectively, 
with the first dose given at time-step 1. The simulation 
was run for 1050 time steps with default parameters. The 
resulting figures were interpreted using Simpson’s Diver-
sity Index (D) [74, 81].

Results
Protein sequence retrieval and multiple sequence 
alignment
The conserved sequence for the vaccine development 
was chosen by performing a multiple sequence alignment 
of the MP sequence of C. neoformans.

Antigenic proteins
The MP of C. neoformans was found to be antigenic with 
a score of 0.8760 at a threshold level of 0.4, as confirmed 
by VaxiJen v2.0.

Physiochemical properties
The selected sequence of MP of C. neoformans was 
analyzed by ProtParam to determine its physiochemi-
cal properties (Table  1). The protein has a molecular 
weight of 38.157 kDa, 377 amino acids, and a theoretical 
pI of 4.03. It has an extinction coefficient of 54360 M-1 
cm-1 at 280nm and a slightly hydrophilic GRAVY score 
of − 0.113. The protein has an instability index of 24.89 
and an aliphatic index of 64.32 and is classified as stable. 
The protein has different estimated half-lives in differ-
ent organisms: 20 h in mammalian reticulocytes in vitro, 
30 min in yeast in vivo, and over 10 h in E. coli in vivo. 
The protein also contains 8 positively charged residues 
(Arg + Lys) and 31 negatively charged residues.

T cell and B cell epitope prediction
An IDEB server was utilized to predict binding epitopes 
of MP of C. neoformans for CTL, HTL, and LBL.
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CTL binding epitope prediction
The IDEB server utilized NetMHCpan EL 4.1 to pre-
dict 9963 CTL binding epitopes of the C. neoformans 
MP sequence. Table  2 displays the filtered CTL bind-
ing epitopes selected based on their antigenicity, non-
allergenicity, immunogenicity, and non-toxic properties. 
Table S1 from the supplementary material shows the 
alleles of the selected CTL epitopes for vaccine designing.

HTL binding epitope prediction
The IEDB recommended the 2.22 method, which pre-
dicted 9801 HTL binding epitopes of the MP of C. neo-
formans. The predicted epitopes were filtered based on 

their antigenicity, non-allergenicity, IFN-gamma induc-
ing, IL4 inducing, IL10 inducing, and non-toxic proper-
ties, as shown in Table  3. Table S2  from supplementary 
material shows the alleles of the selected HTL epitopes 
for vaccine designing.

LBL binding epitope prediction
The Emini surface accessibility prediction, BepiPred lin-
ear epitope prediction 2.0, and Artificial neural network-
based LBL epitope prediction methods were utilized 
to predict the LBL epitopes of MP of C. neoformans. 
The predicted LBL binding epitopes were screened for 

Table 1 Physiochemical properties of MP of C. neoformans predicted by ProtParam

Sr. No Physiochemical properties MP

1 Molecular weight (kDa) 38.157

2 Amino acids number 377

3 Theoretical pI 4.03

4 Ec  (M−1  cm−1, at 280nm) 54360

5 GRAVY − 0.113

6 II 24.89

7 AI 64.32

8 R+ 8

9 R− 31

10 Protein classification Stable

11 Estimated half‑life 20 h (mammalian reticulocytes, in vitro), 
30 min (yeast, in vivo), and > 10 h (E. coli, 
in vivo)

Table 2 NetMHCpan EL 4.1 method on IEDB server predicted antigenic CTL binding epitopes of MP in C. neoformans 

Sr. No Position Peptides Antigenicity Score Toxicity Immunogenicity Allergenicity

1 141–149 GNPVGGNVT 4.03 No 0.12 No

2 142–150 NPVGGNVTT 3.45 No 0.13 No

3 45–53 QTSYARLLS 1.93 No 0.013 No

4 277–285 TSVGNGIAS 1.95 No 0.21 No

5 200–208 WVMPGDYTN 2.56 No 0.0052 No

Table 3 MP of C. neoformans antigenic HTL binding epitopes predicted using IEDB recommended 2.22 method on the IEDB server

Sr. No Position Epitopes Antigenicity 
Score

Toxicity IFN-Gamma 
Inducing 
ability

IFN-Gamma 
Inducing 
Score

IL4 Inducing IL10 Inducing Allergenicity

1 309–323 AAATGSSSSGSTGSG 2.45 No Positive 0.86 Positive Positive No

2 318–332 GSTGSGSGSAAAGST 2.79 No Positive 0.85 Positive Positive No

3 317–331 SGSTGSGSGSAAAGS 2.86 No Positive 0.99 Positive Positive No

4 316–330 SSGSTGSGSGSAAAG 2.91 No Positive 0.84 Positive Positive No

5 315–329 SSSGSTGSGSGSAAA 2.91 No Positive 1.14 Positive Positive No
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antigenicity, non-allergenicity, and non-toxic properties 
and are presented in Table 4.

Population coverage of the epitopes
IEDB’s Population Coverage was used to determine 
the population coverage percentages of CTL and HTL 
epitopes in different regions, as illustrated in Fig. 2.

Epitope conservancy analysis
All selected CTL, HTL, and LBL epitopes for an MP of 
the C. neoformans vaccine were confirmed as conserved 
by epitope conservancy analysis.

Protein-based vaccine construction
The vaccine for MP of C. neoformans contained 5 CTL, 5 
HTL, and 5 LBL epitopes, an adjuvant at the N-terminal 
end combined with different linkers, and a 6 × His tag at 
the C-terminal end, as shown in Fig. 3.

Physiochemical parameters, antigenicity, allergenicity, 
toxicity, and solubility of vaccine construct
The ProtParam server assessed the physiochemical prop-
erties of the MP vaccine of C. neoformans (Table 5). The 
VaxiJen 2.0 server verified its antigenicity with a score 
of 0.6466, and AllerTop 2.0 and Toxinpred2 confirmed 
the vaccine’s non-allergenic and non-toxic properties 
(Table 5). The constructed vaccine also has a high solubil-
ity score of 0.902, indicating its soluble expression in E. 
coli (Table 5).

Secondary and tertiary structure modeling
SOPMA webserver predicted secondary structure 
parameters of the constructed vaccine for the MP of C. 
neoformans. Table  6 and Fig.  4 show the percentage of 
the vaccine’s alpha helix, extended strand, beta-turn, and 
random coil. The random coil was the dominant struc-
ture (50.41%). ColabFold generated five 3D models based 
on C-score, with Fig. 5a displaying the tertiary structure 
of the vaccine protein.

Table 4 Predicted MP LBL epitopes of C. neoformans using IEDB’s Emini surface accessibility prediction, BepiPred Linear Epitope 
Prediction 2.0, and artificial neural network‑based LBL epitope prediction methods

Sr. No Position Peptide Length Antigenicity 
Score

Toxicity Allergenicity

1 228–353 ANGSTSTFQQRYT GTY TNGDGSLGTWTQGETVTPQTAYSTPATSNCKTYTS‑
VGNGIASLALSNAGSNSTAAATNSSSGGASAAATGSSSSGSTGSGSGSAAA‑
GSTAAASSSGDSSSSTSAAMSNGI

126 1.2711 No No

2 135–151 HGATGLGNPVGGNVTT 16 3.1745 No No

3 28–44 TMGPTNPSEPTLGTAI 16 1.0603 No No

4 141–157 GNPVGGNVTTNATGSD 16 2.5732 No No

5 294–310 NSTAAATNSSSGGASA 16 1.628 No No

Fig. 2 IEDB’s population coverage tool assesses the geographic distribution of population coverage percentages for CTL and HTL epitopes
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Refinement and verification of 3D vaccine
The 3D structure of the vaccine of MP of the C. neo-
formans was refined using GalaxyRefine online web 
server (Fig. 5b) and validated with a Ramachandran plot 
(Fig. 6). The plot showed more than 90% of the residues 
in the most favored region, indicating a good model. 

The number of residues in the disallowed region of the 
Ramachandran plot was only 0.8%. The ERRAT over-
all quality factor was 94.697%. However, the VERIFY3D 
averaged 3D-1D score failed with 73.27%, less than 80% 
of the amino acids scored.

Discontinuous and linear B cell epitope prediction
ElliPro tool confirmed the presence of five linear B cell 
epitopes and 14 discontinuous B cell epitopes (Fig. 7) in 
the vaccine of MP of the C. neoformans, with score val-
ues in Tables S3 and S4 from supplementary material. 
The presence of these epitopes is essential for activat-
ing humoral immunity and the secretion of antibodies 
against the foreign antigen.

Molecular docking and simulation
ClusPro 2.0 was used to perform vaccine-TLR2, vac-
cine-TLR4, and vaccine-TLR6 docking and estimated 
the binding affinity of 30 different complexes. The best 
dock complexes of vaccine-TLR2, vaccine-TLR4, and 
vaccine-TLR6 were visualized in PyMol and Discovery 
Studio, with respective binding affinity − 1413.7, − 1413.7, 
and − 1390.2 kcal/mol, as shown in Fig. 8 and Table 7.

Fig. 3 Structure of the C. neoformans vaccine candidate’s MP, including adjuvant, LBL, CTL, and HTL epitopes, separated by linkers and a 6‑H tag

Table 5 Properties of C. neoformans MP vaccine: physiochemical, 
antigenic, allergenic, toxic, and soluble

Sr. No Physiochemical properties Vaccine construct

1 Molecular weight 45,586.01

2 Number of amino acids 490

3 Theoretical pI 6.18

4 Formula C1903H3051N567O716S8

5 Ec  (M−1  cm−1, at 280nm) 27390

6 GRAVY − 0.226

7 II 17.10

8 AI 54.22

9 R+ 26

10 R− 29

11 Stability Stable

12 Estimated half‑life 30 h (mammalian 
reticulocytes, 
in vitro)
> 20 h (yeast, 
in vivo)
> 10 h (E. coli, 
in vivo)

13 Antigenicity score 1.4344

14 Antigenicity Antigenic

15 Allergenicity Non‑allergenic

16 Toxicity Non‑toxic

17 Solubility score 0.88

Table 6 Predicting secondary structure parameters of C. 
neoformans MP vaccine construct

Sr. No Secondary structure parameters Percentages

1 Alpha helix (%) 32.65

2 Extended strand (%) 10.61

3 Beta turn (%) 6.33

4 Random coil (%) 50.41
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Fig. 4 Graphical representation of the C. neoformans vaccine construct’s secondary structure

Fig. 5 The 3D structure of C. neoformans MP vaccine construct predicted by ColabFold (a) and refined by GalaxyRefine (b)
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The stability and mobility of the vaccine-TLR2, vac-
cine-TLR4, and vaccine-TLR6 docked complexes were 
analyzed using the iMODS tool based on dynamics and 
normal modes. The mobility of residues and docked com-
plexes were shown with small and large arrows, respec-
tively, and deformability values were shown in Fig. 9a–f. 
The B-factor values obtained from NMA indicated the 
mobility of docked complexes, and eigenvalues repre-
sented the rigidity of the complexes (Fig. 9g-l). The vari-
ance graphs displayed the relative contributions of each 
normal mode’s variance to the equilibrium motions. The 
covariance graphs showed the mobility types of a par-
ticular molecule region, and elastic network graphs dis-
played the stiffness of the springs that link pairs of atoms 
(Fig. 9m–u).

Codon optimization and in silico cloning
The JCat tool optimized the vaccine sequence for effi-
cient expression in E. coli bacteria with a 52.72% GC 
content and a CAI value of 0.996. The SalI and EcoRI 
restriction sites were utilized to insert the optimized 
DNA sequence into the E. coli vector PET28a( +). A 6.6 

kbp clone (Fig. 10) was constructed, and the recombinant 
vaccine was purified with immune chromatography using 
a 6-histidine tag.

mRNA secondary and tertiary structure prediction
The optimized DNA sequence of the vaccine was con-
verted into an RNA sequence to construct the mRNA 
vaccine. RNAfold was used to generate the mRNA’s 
secondary structure, which had minimal free energy 
of − 452.10 kcal/mol, as depicted in Fig. 11. The 3D struc-
ture of mRNA is shown in Fig. 12.

Immune simulation analysis
C-ImmSim reported that the primary immune response 
was significantly stimulated by the gradual increase in 
immunoglobulin levels such as IgG, IgG1, IgG2, and IgM 
after each of the three vaccine doses. However, the concen-
tration of immunoglobulins was highest immediately after 
the vaccine was administered and decreased over time. The 
concentration of immunoglobulins was significantly higher 
after the third dose. In contrast, the antigen concentration 
decreased during and after the vaccine’s second and third 

Fig. 6 Ramachandran plot used to validate the 3D structure of C. neoformans MP vaccine construct
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doses, as illustrated in Fig. 13a. The active and total B cell 
populations remained elevated, as shown in Fig. 13b, c. The 
concentration of plasma B cells increased for several days 
after the vaccination (Fig. 13d). The active and total helper 
T cells were elevated and sustained after administering the 
vaccine (Fig. 13e, f ). The active and resting helper regula-
tory T cell concentrations were highest after the first shot 
of the vaccine and gradually decreased over time (Fig. 13g). 
The concentration of cytotoxic helper T cells varied over 

time (Fig. 13h). Their active form decreased with constant 
energy after vaccination doses (Fig. 13i). The population of 
natural killer cells also fluctuated during the vaccination 
process (Fig.  13j). The concentrations of dendritic cells, 
macrophages, and epithelial presenting cells were evalu-
ated in cells per  mm3, as shown in Figs. 13k–m. The activa-
tion of different cells resulted in the elevation of different 
cytokine and interleukin concentrations after the vaccine 
(Fig. 13n).

Fig. 7 Linear and discontinuous B cell epitopes mapped on the vaccine construct of MP of C. neoformans. The yellow area of the vaccine shows 
each linear B cell epitope containing residues from 5 to 113 with score values from 0.505 to 0.756 (a–e) and each discontinuous B cell epitope 
containing residues from 3 to 86 with score values from 0.56 to 0.808 (f–m). Information on the number, types of residues, and scores of linear 
and discontinuous B cell epitopes can be found in Tables S3 and S4 from supplementary material, respectively
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Fig. 8 ClusPro 2.0 provided the best vaccine‑TLR2, vaccine‑TLR4, and vaccine‑TLR6 docking results. The vaccine’s docking positions with TLR2, TLR4, 
and TLR6, and the interactions between the vaccine’s residues and TLR2, TLR4, and TLR6, are shown in a–c and d–f, respectively
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Discussion
Developing vaccines against fungi is challenging due 
to their ability to change shape [82]. Fungal infections 
typically begin with inhaling spores, which the immune 
system is generally effective at killing. However, if the 
immune system fails, an infection can occur. Unfortu-
nately, vaccines for invasive mycoses and other fungal 
infections are currently unavailable, and antifungal drugs 
are limited, resulting in a poor prognosis for these dis-
eases. C. neoformans infections can be severe for immu-
nocompromised individuals, but vaccines for fungal 
diseases like cryptococcosis are still in development. Sev-
eral potential vaccine types for cryptococcal meningitis 
exist, including whole organism vaccines, subunit recom-
binant protein vaccines, and mRNA vaccines.

In recent years, there has been a shift towards using 
multi-omics approaches for vaccine development, which 
utilize bioinformatics and structural biology tools to 
generate epitope-based vaccines. These studies, which 
focus on the antigenic parts of the pathogenic microor-
ganisms, have shown promising results and represent a 
significant percentage of vaccine development research 
[83, 84]. However, developing an effective vaccine against 
C. neoformans has been challenging due to the fungus’s 
complex nature, genetic plasticity, and lack of broadly 
applicable testing. The current study employed a reverse 
vaccinology approach to generate a shortlist of poten-
tial vaccine candidates based on analyzing the MPs of C. 
neoformans through immunoinformatic computational 
tools. The objective was to identify conserved vaccine 
candidates that provide coverage against various patho-
types before proceeding to the subsequent stage of wet 
lab validation. A multi-epitope vaccine was designed 
based on the filtered vaccine candidates [85].

Using the immunoinformatics approach, the outer cell 
wall protein (MP) of C. neoformans was selected as the 
target for vaccine design, following successful application 

against various pathogens. A recent study proposed a 
multitype vaccine against COVID-19 using a deep learn-
ing approach for prediction and design. This study uti-
lized a similar methodology to prior successful vaccine 
designs, emphasizing developing a potential vaccine that 
provides coverage against the majority of C. neoformans 
pathotypes and investigating its characteristics rather 
than introducing novel prediction techniques [86–88].

The present study utilized online web servers to spec-
ify vaccine candidates against C. neoformans pathotypes 
that were highly conserved. The outer cell wall pro-
tein, MP, was selected due to its high antigenicity score 
(0.876) and non-homology to human proteins for safety 
in clinical trials. MP is essential for fungal shape main-
tenance and survival. Fungal MP cell wall heavily glyco-
sylated protein plays a vital role in fungal physiology and 
pathogenesis, such as cell–cell recognition, cell surface 
protection, and interaction with the host immune sys-
tem [35, 89]. Additionally, their accessibility to the host 
immune system makes them promising candidates for 
vaccine development [90]. MPs in the fungal cell wall are 
promising targets for drugs and vaccines against fungal 
infections. Enzyme preparations containing protease and 
β-glucanase have been authorized for extracting MPs 
from yeast walls. However, the development of drugs 
targeting β-1,3-glucan synthesis has been more success-
ful than vaccines targeting MPs. Vaccine development 
against the MPs is a promising target to stop the growth 
of fungi accompanied by drugs.

Utilizing epitopes that have been mapped for con-
structing a vaccine is an advanced approach to eliciting 
an immune response against infectious agents [91]. How-
ever, relying solely on peptide vaccines has its limita-
tions. Single peptide epitopes may not be potent enough 
to trigger a robust and sustained immune response, as 
they possess low immunogenicity and may be unstable, 
getting degraded by human proteolytic enzymes before 

Table 7 The properties and characteristics of the best vaccine‑TLR2, vaccine‑TLR4, and vaccine‑TLR6 docking complexes obtained 
from ClusPro 2.0, including the number of interface residues, salt bridges, hydrogen bonds, non‑bonded contact with interface area, 
binding affinity, electrostatic‑favored binding affinity, hydrophobic‑favored binding affinity, and van‑der wall and electrostatic binding

Docking No. of 
interface 
residues

Interface 
Area (Å2)

Binding 
Affinity 
(kcal/mol)

Electrostatic-
favored 
binding 
affinity (kcal/
mol)

Hydrophobic-
favored 
binding 
affinity (kcal/
mol)

Van-der 
Waal and 
electrostatic 
binding 
affinity (kcal/
mol)

No. of 
salt 
bridges

No. of 
hydrogen 
bonds

No. of non-
bonded 
contacts

TLR2-vac-
cine

40–24 1466–1882 − 1413.7 − 1714.8 − 2238.2 − 346.5 18 264

TLR4-vac-
cine

40–24 1466–1882 − 1413.7 − 1714.8 − 2238.2 − 346.5 18 264

TLR6-vac-
cine

60–47 2340–2594 − 1390.2 − 1340.6 − 1972.2 − 209.1 2 36 370
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Fig. 9 MDS results of vaccine‑TLR2, vaccine‑TLR4, and vaccine‑TLR6 docked complexes obtained using iMODs server. The results include NMA 
mobility (a–c), deformability (d–f), B‑factor (g–i), eigenvalues (j–l), percentage variance (m–o), covariance map (p–r), and elastic network map (s–u) 
of the complexes
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Fig. 10 Improved and optimized vaccine was inserted into pET‑28a (+) E. coli expression vector using SnapGene 4.2 software for in-silico cloning. 
The red color indicates the gene of interest. The black color represents the expression vector pET‑28a (+)
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inducing an immune response [92]. Consequently, the 
present study proposes a multi-epitope vaccine that 
combines peptides with suitable linkers, filtered through 
various criteria to select conserved, highly antigenic, 
immunogenic, cytokine-inducing, non-allergenic, and 
non-toxic epitopes. Multi-epitope vaccines are superior 
to monovalent ones as they stimulate efficient humoral 
and cellular immune responses [93].

In this study, different CTL binding epitopes hav-
ing antigenic, immunogenic, non-toxic, and non-
allergic were sorted after predicting through the 
NetMHCpan EL4.1 method. Accordingly, five CLT 
epitopes were selected for the vaccine candidate against 
C. neoformans due to their high antigenic score, as 
shown in Table  2 and Fig.  3. Correspondingly, multiple 
HTL epitopes with antigenic, non-toxic, non-allergic, 
IFN-gamma, IL4, and IL10-inducing properties were 
identified. However, despite this, only five HTL bind-
ing epitopes were chosen because of higher antigenicity, 

Fig. 11 Predicted centroid secondary structure of mRNA of the vaccine construct

Fig. 12 Tertiary structure of mRNA of the vaccine construct



Page 17 of 22Elalouf and Yaniv‑Rosenfeld  Journal of Genetic Engineering and Biotechnology          (2023) 21:108  

Fig. 13 An in silico immune response simulation was performed on the designed vaccine with 3 shots for 350 days. Various parameters were 
assessed, including antigen and immunoglobulins (a), B cell (b–d), T cell (e–i), natural killer cell (j), dendritic cell (k), macrophage (l), epithelial 
presenting cell (m) populations, and cytokine concentration (n). Simpson index (D) was used to evaluate the simulation results
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as mentioned in Table 3 and Fig. 3. In the same way, five 
LBL epitopes with higher antigenicity, non-toxicity, and 
non-allergenicity were preferred for the C. neoformans 
vaccine candidate (Table 4 and Fig. 3).

The final vaccine construct included adjuvants like 
50S ribosomal protein L7/L12 to generate to settle the 
antigenic components consistently released over time, 
improving the immune response and activating TLR. This 
outcome overcomes one of the main limitations of pep-
tide vaccines [55, 94–96]. Effective linkers were utilized 
to connect preferred epitopes from each protein candi-
date, providing sufficient separation between them [97]. 
Initially, EAAAK was utilized to enhance the bi-func-
tional catalytic activity and rigidity while also improving 
the stability of the fusion protein [98]. The AAY linker 
is used to connect CTL epitopes in a natural form and 
prevent the formation of junctional epitopes, improving 
multi-epitope vaccine presentation. GPGPG was cho-
sen for its ability to induce HTL immune response and 
restore immunogenicity of individual epitopes by break-
ing junctional immunogenicity [99]. The KK linker was 
selected for its pH-regulating properties close to the 
physiological range [100].

Based on previously published studies [73, 74, 81, 
101–103], a stable potential vaccine construct was devel-
oped consisting of 490 residues with a molecular weight 
of 45.58 kDa, a slightly acidic pI of 6.18, high antigenicity 
score of 1.4344, and high solubility score of 0.88. The vac-
cine was developed by incorporating selected LBL, HTL, 
and CTL epitopes, linkers, adjuvant, and 6 × His Tag. The 
vaccine demonstrated high population coverage across 
different world continents (Fig. 2), and its secondary and 
tertiary structures were predicted (Table  6 and Figs.  4 
and 5). The vaccine was identified to be antigenic, as well 
as non-allergenic and non-toxic. The 3D structure of the 
vaccine was then validated by the Ramachandran plot 
(Fig. 6), ERRAT, and VERIFY3D. Further, five linear and 
fourteen discontinuous B cell epitopes (Tables S3 and S4 
from supplementary material and Fig.  7) confirmed the 
ability of the conjugate vaccine to activate the B cells for 
antibody production.

After the inoculation of the vaccine, its primary goal is 
to activate the immune response against the foreign anti-
gen. For this purpose, TLRs recognize and respond to 
molecules from pathogens to activate innate immunity. 
Several TLRs are involved in fungal recognition, but the 
most important ones are TLR2 and TLR4. TLR2 can form 
complexes with TLR1 or TLR6 to detect various fungal 
cell wall components, such as mannoprotein. However, 
TLR4 can recognize fungal mannans and β-glucans. 
In addition, TLR2 and TLR4 can cooperate with other 
receptors, such as Dectin-1, to enhance the immune 
response to fungi. TLRs can activate macrophages, 

neutrophils, and dendritic cells to produce inflammatory 
cytokines and kill  fungi135. They can also polarize adap-
tive immunity by inducing Th1 or Th17  responses146. 
For this purpose, the vaccine docked with TLR2, TLR4, 
and TLR6 receptors on different immune cells’ surfaces. 
The docking results of the vaccine with TLR2, TLR4, 
and TLR6 confirmed significant − 1413.7, − 1413.7, 
and − 1390.2 kcal/mol of binding energies of the com-
plexes, respectively (Table  7 and Fig.  8). In addition, 
the molecular simulation results showed the mobility, 
deformability, B-factor, eigenvalues, variance, and covari-
ance of the vaccine with TLR2, TLR4, and TLR6 com-
plexes (Fig. 9).

The expression of the vaccine construct was then ana-
lyzed by in silico cloning, as shown in Fig.  10. Further, 
the finalized DNA sequence was transcribed into mRNA. 
Then, their secondary (Fig.  11) and tertiary (Fig.  12) 
structures were predicted. Finally, the in silico immune 
response of the conjugate vaccine was validated by inocu-
lating three vaccine shots of 1000 antigens with eight and 
then 24  weeks of intervals after the 1st shot for a total 
of 350 days. The production of all the required immune 
cells, interferons, and other pro-inflammatory cytokines 
against the vaccine was produced with different concen-
trations at different times after the inoculation of the vac-
cine, as shown in Fig. 13.

Currently, few efforts have been made to suggest vac-
cines against fungi, and the development of such vac-
cines has not been successful. The futile experiments 
stem from the fungal’s subtle differences in pathogenesis, 
host–pathogen interactions, and immune responses. 
Hence, the study has utilized a systemic immunoin-
formatic approach to develop a potent multi-epitope-
based fungal vaccine. However, despite the potential of 
the immunoinformatic approach, there may be limita-
tions due to the absence of a standard benchmark for 
vaccine development against fungi and limited knowl-
edge of their pathogenesis and adaptive immune system 
response. Consequently, to evaluate the immunogenic-
ity, efficacy, and safety of the newly developed vaccine, 
experimental validation is required both in  vivo and 
in vitro.

Conclusion
In silico vaccine design utilizing computational 
approaches was performed to identify a potential can-
didate for clinical trials. The study constructed an effec-
tive vaccine against MP of the C. neoformans to achieve 
good population coverage and immune response. By 
employing immuno-informatics techniques, T and B 
cell multi-epitope vaccines were designed. Molecu-
lar docking was conducted with ClusPro, demonstrat-
ing binding energies of − 1413.7, − 1413.7, and − 1390.2 
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kcal/mol with TLR2, TLR4, and TLR6, respectively, and 
the Ramachandran plot indicating a favored region of 
93.7%. The vaccine construct was found to have good 
protein expression as determined by the SnapGene 
tool. Moreover, in silico trials demonstrated a strong 
immune response to the vaccine against MP of the C. 
neoformans. The proposed vaccine construct fulfilled 
the criteria for antigenicity, immunogenicity, aller-
genicity, toxicity, and other physicochemical properties, 
suggesting it is stable and safe. However, preclinical 
studies and authentication are required before experi-
mental clinical trials can be conducted to confirm the 
study results.
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