
Onohuean and Nwodo  
Journal of Genetic Engineering and Biotechnology           (2023) 21:94  
https://doi.org/10.1186/s43141-023-00554-1

RESEARCH

Polymorphism and mutational diversity 
of virulence (vcgCPI/vcgCPE) and resistance 
determinants (aac(3)‑IIa, (aacC2, strA, Sul 1, 
and 11) among human pathogenic Vibrio 
species recovered from surface waters 
in South-Western districts of Uganda
Hope Onohuean1,2*   and Uchechukwu U. Nwodo3 

Abstract 

Background Vibrio species are among the autochthonous bacterial  populations found in surface waters and associ-
ated with various life-threatening extraintestinal diseases, especially in human populations with underlying illnesses 
and wound infections. Presently, very diminutive information exists regarding these species’ mutational diversity 
of virulence and resistance genes. This study evaluated variations in endonucleases and mutational diversity of the vir-
ulence and resistance genes of Vibrio isolates, harboring virulence-correlated gene (vcgCPI), dihydropteroate synthase 
type 1 and type II genes (Sul 1 and 11), (aadA) aminoglycoside (3′′) (9) adenylyltransferase gene, (aac(3)-IIa, (aacC2)a, 
aminoglycoside N(3)-acetyltransferase III, and (strA) aminoglycoside 3′-phosphotransferase resistance genes.

Methods Using combinations of molecular biology techniques, bioinformatics tools, and sequence analysis.

Results Our result revealed various nucleotide variations in virulence determinants of V. vulnificus (vcgCPI) at nucleo-
tide positions (codon) 73–75 (A → G) and 300–302 (N → S). The aminoglycosides resistance gene (aadA) of Vibrio 
species depicts a nucleotide difference at position 482 (A → G), while the aminoglycosides resistance gene (sul 
1 and 11) showed two variable regions of nucleotide polymorphism (102 and 140). The amino acid differences 
exist with the nucleotide polymorphism at position 140 (A → E). The banding patterns produced by the restriction 
enzymes HinP1I, MwoI, and StyD4I showed significant variations. Also, the restriction enzyme digestion of protein 
dihydropteroate synthase type 1 and type II genes (Sul 1 and 11) differed significantly, while enzymes DpnI and Hinf1 
indicate no significant differences. The restriction enzyme NlaIV showed no band compared to reference isolates 
from the GenBank. However, the resistant determinants show significant point nucleotide mutation, which does 
not produce any amino acid change with diverse polymorphic regions, as revealed in the restriction digest profile.

Conclusion The described virulence and resistance determinants possess specific polymorphic locus relevant 
to pathogenomics studies, pharmacogenomic, and control of such water-associated strains.
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Background
Most Vibrio species are human pathogens [1, 2] and 
disease-causing strains that have been particularly 
implicated in gastroenteritis and the infection of open 
wounds, causing sepsis [3]. These species are primarily 
present in water and food and carried by many marine 
animals, such as crabs or prawns, which carry the bacte-
ria that can cause fatal illnesses if exposed [4–7].

Several genomic, proteomic, and genetic markers have 
been applied to the pathogenic profile of the water-lov-
ing Vibrio species [6]. In particular, primary pathogenic/
epidemic genetic markers/genes for V. cholerae include 
ctxAB, tcpA, hap, and toxR, which codes for cholera 
toxin, toxin-coregulated adhesion pili, soluble hemag-
glutinin/protease, and regulatory toxoid [2, 8, 9]. While 
V. parahaemolyticus has the genetic marker O3:K6 anti-
gens that regulate the serovar, also the genes toxRS [10], 
orf8 [11], and tdh; and trh, found in most of the patho-
genic strains. The V. Vulnificus markers involve patho-
genicity region XII, nanA, and a mannitol fermentation 
operon containing alleles of the 16S rRNA and vcg genes 
linked with pathogenicity [12]. V. mimicus genetic factors 
include; quorum-sensing regulation system, hemolysins, 
proteases, outer membrane proteins [(OmpU), OmpT, 
OmpK, and OmpV] [2], a type IV and MSHA pilus, an 
aerobactin siderophore, a capsular polysaccharide, an 
accessory colonization factor (acfD), the transmembrane 
regulatory protein ToxS, the transcriptional activator 
ToxR, and the presence of quorum- (LuxS, LuxO, LuxR) 
[13]. While other pathogenic vibriosis shares common 
and/or combined genetic markers. It is imperative to 
note that some Vibrio spp., show no positive result to the 
aforementioned genetic markers but are potential patho-
gens, implying the discrimination markers insufficient to 
trace the toxins in the bacterial isolate in environment 
samples [7].

In addition, multiple drug resistance is well reported 
among the Vibrio strains highlighting mechanisms via 
resistance coding genes [9], the acquisition of con-
jugative plasmids [14–16], genetic elements (class 1 
integron and SXT elements), a potential carrier of 
antimicrobial resistance genetic determinants [9, 17, 
18]. Also, conjugative elements (ICEs) are a type of 
mobile genetic element that encodes various charac-
teristics, including drug resistance [19]. Specifically, 
the SXT element helps horizontal resistance gene 
transfer and rearrange resistance genes in V. cholerae. 
It was initially found in the V. cholerae O139 MO10 

chromosome from India (SXTMO10) but was later 
observed in other strains [20]. This element can mobi-
lize plasmids, integron genes, and other resistant genes, 
including chloramphenicol (coded by floR), streptomy-
cin (strA  and  strB), sulfamethoxazole (sul1 and sul2), 
trimethoprim (dfrA18), Penicillins (AmpC), lactamase 
for Cephalosporins, (blaSHV, blaTEM, blaCTX-M) 
Carbapenems (blaNDM-1, blaKPC, blaIMP, blaVIM), 
Macrolides (vanA, mecA), and Fluoroquinolones (mcr-
1) and tetracycline (tetA gene) [7, 21–24]. High levels of 
resistance to sulfamethoxazole (sul2), chloramphenicol 
(floR), streptomycin (strA and strB), and trimethoprim 
(dfrA1) have been documented [18], which are associ-
ated with the integrase gene, SXT int, and associated 
SXT resistance genes. At the same time, there are vari-
ant types of the SXT element among pathogenic Vibrio 
spp. (Vibrio vulnificus, Vibrio metschnikovii, Vibrio 
fluvialis, and Vibrio parahaemolyticus) harbor these 
resistance genes [2, 25, 26].

Understanding the wide variations or mutations in 
virulence and resistance genes, including genetic and 
pathogenic diversity in natural environments among 
Vibrio species, are important and relevant indices for 
control, especially among other strains of Vibrio. Like 
other infectious diseases, typically fluoroquinolone 
resistance has been attributed to amino acid changes 
at positions Ser79 of ParC and Ser81 of GyrA to either 
Phe or Tyr (8, 33) [27, 28]. However, the appropriate 
codons’ single-base modifications cannot account for 
these amino acid alterations, often they are second-
step substitutions caused by 2-bp changes to the ser-
ine codons at ParC (TCT to CTT) or GyrA (TCC to 
ATC), respectively [27]. Also, mutations detected in 
the QRDRs of GyrA (Ser83-Ile) and ParC (Ser85-Leu) 
revealed the mechanisms for nalidixic acid resistance 
among Vibrio strains [26]. These mutations of a set of 
mobile fluoroquinolone resistance genes (qnr-genes), 
are implicated in the contamination of microbial com-
munities. For instance, the chromosomal resistance 
mutations can arise de novo and become abundant in 
a population with strong sufficient antibiotic selective 
pressure, thereby confirming clinically relevant resist-
ance. However, the abundance and distributions of 
these chromosomal resistance mutations in environ-
mental bacterial communities are poorly investigated.

Pulsed-field gel electrophoresis (PFGE) uses appro-
priate restriction enzymes to break down bacterial 
DNA at a select few locations in the genome, resulting 
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in big or macro-DNA fragments that may be sorted 
based on size. It has been demonstrated that PFGE 
banding patterns produced by NotI restriction are a 
useful genotypic tool for identifying V. cholerae O1 
strains [29]. Comparison of these restriction enzyme 
profiling could indicate whether isolates are epidemio-
logically linked to understanding regional diversity and 
global distribution for comprehensive ancestry analy-
sis of pathogenic Vibrio spp. [30]. Therefore, this study 
assesses the polymorphism and mutational diversity of 
the nucleotide and putative amino acid sequences of 
virulence (vcgCPI and vcgCPE) and resistance deter-
minants (aac(3)-IIa, (aacC2, strA, Sul 1, and 11) found 
among human pathogenic Vibrio species that were 
recovered from surface waters in South-Western dis-
tricts of Uganda.

Methods
Collection of samples, processing, and enumeration 
of Vibrio spp.
A total of 230 water samples were collected from 46 vil-
lages between June 2018 and October 2018. Using steri-
lized Nalgene glass bottles, (1000 ml) water samples were 
collected from different sampling points in each of the 
four districts (including, Bushenyi, Mitooma, Rubirizi, 
and Sheema) in South West of Uganda and transported 
in an ice-cool box to the laboratory for analysis within 
6 h. tenfold dilutions were carried out on the water sam-
ples as described by Adefisoye and Okoh (2016) [31], 
1 mL of each serial dilution was plated onto TCBS agar 
(thiosulphate citrate bile salts sucrose) (Neogen, Lansing, 
MI 48912 USA) in triplicates for 24  h and incubated at 
37 °C. The presumptive Vibrio spp., was then counted and 
measured in colony-forming units per milliliters (CFU/
mL) of water samples for the yellow and green colonies 
identified by colonial morphology and cultural charac-
teristics of the colony as described by Pfeffer and Oliver 
(2003) and Kriem et al., (2015) [32, 33]. A single colony of 
presumptive isolates was then subcultured onto nutrient 
agar to ascertain purity, and each pure culture was picked 
and stored in glycerol stock for further analysis.

Molecular confirmation of presumptive Vibrio species
The glycerol stocks were resuscitated using nutrient 
broth (Merck, Modderfontein, South Africa) and incu-
bated for 24 h at 37 °C, while the genomic DNA of the 981 
presumptive Vibrio spp., isolates were extracted follow-
ing the boiling procedure described by [2, 34] with slight 
modifications. The fresh overnight bacterial isolates were 
sub-cultured into sterile 1.5  mL microfuge tubes and 
centrifuged (HERMLE, Siemensstr-25, D-78564 Wehin-
gen, Germany) at a speed of 13,000 rpm for 10 min. The 
cell pellets were washed twice with phosphate-buffered 

saline, resuspended in 500  µL sterile distilled water, 
and then lysed to release the DNA by boiling at 100  °C 
for 10  min in pre-heated heating blocks (Techne heat-
ing block Dri-Block, DB-3D; Gauteng, Pretoria, South 
Africa). Afterward, the suspensions were centrifuged for 
5 min at 15,000  rpm, and the supernatant was carefully 
pipetted into sterile Cryon tubes (Labotec, South Africa) 
and stored at − 20 °C.

The primer pair F-5′CGG TGA AAT GCG TAG AGA 
T-3′ and R-5′TTA CTA GCG ATT CCG AGT TC-3′ pre-
viously described by [35], was purchased from Inqaba 
Biotechnical Industries (Pty) Ltd., Pretoria, South Africa 
and used to amplify 16S rRNA genes of Vibrio spp., 
generating an amplicon size of ~ 663. The PCR reaction 
mixture of 25 µL (12 µL PCR master mix (New England 
BIOLABS), 1  µL of each forward and reverse primers, 
6 µL of PCR grade water, and 5 µL of genomic DNA tem-
plate were amplified using BioRad T100 thermal Cycler 
Lasec. (621BR44012, Singapore). Afterwards, 4 µL of the 
amplicons were electrophoresed in 1.5% agarose gel using 
the thermal tank (Labnet, Enduro Gel XL, USA) on stain-
ing with ethidium bromide (0.5 µL) and 0.5X Tris–borate 
EDTA (TBE) buffer with a controlled base size of 100-bp 
DNA ladder (New England BIOLABS), Madison, WI, 
USA). A 100 V and 60 min electrophoresis process was 
done, and the gels were visualized under the UV trans-
illuminator (Alliance 4.7, UVItec, Merton, London, UK.

Determination of virulence genes signature 
of the confirmed Vibrio species
The virulence gene signature distributions in the con-
firmed Vibrio spp isolates were determined using the 
PCR technique as we have described before [2, 36], with 
slight modifications. The set of primers indicates the tar-
geted genes, sequence, and conditions in Table  1. The 
PCR reaction mixture was made up to a final volume of 
25  μL, while the electrophoresed amplified amplicons 
were visualized as stated earlier.

Antibiotic resistance determinants using simplex PCR
The simplex PCR was used to assay relevant resistance 
determinants for the isolates obtained from phenotypic 
antibiotic-resistant Vibrio spp., isolates based on the sus-
ceptibility patterns [9, 34]. The resistance genes for the 
classes and specific antibiotics were assayed for includ-
ing those of aminoglycosides [Kanamycin, Nitrofuran-
toin (strA, aadA, aac(3)-IIa (aacC2)a)]; and sulfonamides 
[Trimethoprime-sulfamethoxazole (sul11)]. The prim-
ers targeting conserved regions of the specific genes, 
sequence, cycle procedures, and expected amplicon band 
sizes are indicated in Table  1. All the PCR and electro-
phoresis procedures were carried out as earlier described.
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Partial nucleotide sequencing of amplicons and sequence 
analysis
For sequencing of amplicon gene analyses, the posi-
tive PCR products/amplicons of high quality were 
selected for sequencing at Inqaba Biotechnical Indus-
tries (Pty) Ltd. (Hatfield 0028, South Africa) using the 
forward and reverse primers earlier used in PCR ampli-
fication [40]. The amplicons/PCR products were puri-
fied and sequenced with standard Sanger sequencing 
[41]. Sequenced DNA were cleaned and edited in Bio 
Edith 3.3.19.0 and chromas 2.6.6 software, then blasted 
and assembled using Geneious 2021.1 [42]. As a first 
step, the DNA sequences were run via the Basic Local 
Alignment Search Tool (BLAST) to ensure that all of 
the sequences were genuinely Vibrio spp., compared 
to other GenBank sequences. Bioedit software [43] 
was used for nucleotide sequence alignment, whereas 
ClustalW, implemented in Geneious 10.1.2 software, 
was used for amino acid alignment [42].

Restriction enzymes length polymorphism (RFLP) using six 
different digestive enzymes
The consensus sequence generated from Bioedit was 
used to analyze for RFLP by exploring the New Eng-
land Biolabs restriction enzymes tools for analyzing 
DNA sequences at the site: http:// nc2. neb. com/ NEBcu 
tter2/. 6 custom digest restriction enzymes were used 
to cut the DNA sequences, and predict the respec-
tive enzymes’ gel banding patterns [44]. The number 
of banding patterns produced per sequence was then 
counted and recorded respectively.

Results
A. Multiple alignments of the V. vulnificus virulence gene 
and three different isolates of the resistance genes
The gene investigated includes; [(aac(3)-IIa, (aacC2)a] 
aminoglycoside N(3)-acetyltransferase III, [strA] amino-
glycoside 3′-phosphotransferase and [aadA] aminogly-
coside (3′′) (9) adenylyltransferase, both resistance genes 
of (kanamycin, nitrofurantoin) aminoglycosides, and [sul 
1 and 11] dihydropteroate synthase type 1 and 11 resist-
ance gene of (trimethoprim-sulfamethoxazole) sulfona-
mides versus NCBI reference bacteria.

The multiple sequence alignment of the V. vulnifi-
cus virulence gene (vcgCPI) represented as (VC) genes 
obtained from Vibrio isolates in this study and other 
reference bacterial species show numerous nucleotide 
variations at different locations (Fig.  1). However, the 
nucleotide sequence polymorphism and mutation only 
result in similar putative amino acids in the virulence 
reference isolates, such as K. grimontii (LR607341) and 
K. huaxiensis (CP036175) at nucleotide positions 73–75 
(A → G) and 300–302 (N → S) (Figs. 1 and 2).

Figure 3 shows the nucleotide and amino acid sequence 
alignment of the five aminoglycosides resistance gene 
(strA) of Vibrio spp represented as (SR) obtained from 
Vibrio isolates in this study and seven other reference 
bacterial species. It could be deduced that the partial 
SR gene region of the Vibrio isolates sequenced is highly 
conserved; no single nucleotide difference was observed 
among the five sequences compared with all the refer-
ence bacterial species analyzed. Also, the putative amino 
acid sequences of the aligned SR are shown in the Sup-
plementary file.

Nucleotide sequence alignment of partial five amino-
glycosides resistance gene (strA) of Vibrio spp (SR) genes 
obtained from Vibrio isolates with sequences of different 
reference bacterial species from the GenBank.

The outcome of the nucleotide sequence alignment of 
the aminoglycosides resistance gene (aadA) of Vibrio 
spp., represented as (a) gene, from the Vibrio isolates 
in this study, with other six different reference bacteria 

Table 1 Primer pairs for traditional PCR screening and 
nucleotide sequencing of the virulence and resistance genes of 
the Vibrio species

Primer identity Primer sequence Amplicon 
length 
(basepair)

Reference

strA FCTT GGT GAT AAC GGC 
AAT TC

348 [37]

R: CCA ATC GCA GAT AGA 
AGG C

aadA F: GTG GAT GGC GGC CTG 
AAG CC

525 [38]

R: AAT GCC CAG TCG GCA 
GCG 

aac(3)-IIa F: CGG AAG GCA ATA ACG 
GAG 

428 [38]

(aacC2)a R: TCG AAC AGG TAG CAC 
TGA G

sul1 F: TTC GGC ATT CTG AAT 
CTC AC

625 [14]

R: ATG ATC TAA CCC TCG 
GTC TC

sul11 F: CGG CAT CGT CAA CAT 
AAC C

R: GTG TGC GGA TGA AGT 
CAG 

vcgCP1 F: AGC TGC CGA TAG CGA 
TCT 

278 [39]

R: CGC TTA GGA TGA TCG 
GTG 

http://nc2.neb.com/NEBcutter2/
http://nc2.neb.com/NEBcutter2/
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species from the GenBank, equally showed high-level 
genome conservation across the different bacterial spe-
cies, as only one nucleotide difference was observed at 
position 482 (A → G) for both a463 and Aeromonas sal-
monicida (AF327727) (Fig. 4). However, the nucleotide 

difference does not vary in the amino acid sequence at 
the different bacterial species (Fig. 5).

The nucleotide sequence alignment of the 11 aminogly-
cosides resistance gene (sul 1 and 11) represented as (S) 
genes obtained from Vibrio isolates in this study and five 

Fig. 1 Nucleotide alignment of the partial genes V. vulnificus virulence gene (vcgCPI) obtained from Vibrio isolates with other reference bacterial 
species from the GenBank

Fig. 2 Putative amino acid sequences of the aligned V. vulnificus virulence gene (vcgCPI) as obtained in Geneious [42]
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different reference bacterial isolates from the GenBank, 
equally showed a high level of conservancy with only two 
observed regions of nucleotide polymorphism (102 and 
140) as shown in Fig.  6. Sequence S414 from this study 
has nucleotide ‘C’ at position 102 alongside the reference 
C. freundii (KY986974), while other reference bacterial 
species and the remaining ten sequences obtained in this 
study have ‘T’ at the same position. Also, at position 140, 
the sequence S414 has ‘A’ together with the reference C. 
freundii (KY986974) and P. mirabilis  (MT585156), while 
other sequences have nucleotide ‘C’ at the same position 

(Fig. 6). However, amino acid differences only exist due to 
the nucleotide polymorphism at position 140 (A → E), as 
shown in Fig. 7. The MSA was done in Geneious Prime 
2021.0.3 [42].

B. Restriction enzymes length polymorphism using six 
different digestive enzymes
The result of the banding patterns as produced by the 
restriction enzymes show no significant differences 
among the Vibrio isolates and reference bacterial isolates 
extracted from the GenBank. While only the banding 

Fig. 3 The multiple sequence alignment of partial (aadA) resistance genes

Fig. 4 Nucleotide sequence alignment of the one partial (aadA) gene obtained from Vibrio isolates with six reference bacterial species
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pattern produced in isolate a3_966, when digested by 
Hinf1, was significantly different with one band com-
pared to the others and referenced bacterial isolates from 

the GenBank and when the restriction enzymes were 
combined as seen in A (MT151380 V. cholerae) (Table 2).

The banding patterns produced by the restriction 
enzyme endonuclease digestion of virulence-correlated 

Fig. 5 Deduced amino acid sequences of the aligned (aadA) genes. Multiple sequence alignment (MSA) of partial (sul 1 and 11) genes represent 
as (S) genes

Fig. 6 Nucleotide alignment of the 11 partial genomes obtained from (sul 1 and 11) (S) Vibrio isolates with five other reference bacterial species 
from the GenBank
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gene (vcgCPI) differed significantly. The isolate VC_181 
showed a higher banding pattern to the restriction 
enzymes, i.e., HinP1I, MwoI, and StyD4I, compared to 
others used and the reference bacterial isolates from 
the GenBank. In comparison, the banding patterns pro-
duced no significant differences when the isolates were 
digested with the enzymes DpnI and Hinf1. However, the 

reference bacteria CP071393 K. Michigan; CP036175_K. 
huaxiensis produced only a single band when digested 
with the StyD4I restriction enzyme in Table 3.

The banding patterns produced by the restriction 
enzyme digestion of protein dihydropteroate synthase 
type 1 and type II genes (Sul 1 and 11) differed signifi-
cantly. The isolate S_406 showed no band when digested 

Fig. 7 Putative amino acid sequences of the aligned (sul 1 and 11) (S) genes

Table 2 Restriction enzymes length polymorphism analysis of [(aac(3)-IIa, (aacC2)a] using five different digestive enzymes on the 
Sequence resistance genes of 3 isolates of sequence analysis of (aac(3)-IIa, (aacC2)a; aminoglycoside N(3)-acetyltransferase III gene

A MT151380 V. cholerae; B CP047406 E. coli MS6; C CP054305 K. pneumoni; CRE combined restriction enzymes

Restriction enzymes Isolates (sequence genes) Positive control from NCBI

a3_966 a3_969 a3_974 A B C

DpnI 3 3 3 3 3 3

EcoRV 2 2 2 2 2 2

Hinf1 3 5 5 5 5 5

HinP1I 5 5 5 5 5 5

NlaIV 3 3 3 3 5 3

Sac11 2 2 2 2 2 2

CRE 6 7 7 5 7 7
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with the restriction enzyme NlaIV compared to oth-
ers and the reference bacterial isolates from the Gen-
Bank. Generally, variably different banding patterns were 
observed among all the isolates when digested with the 
enzymes DpnI, HinP1I, NlaIV, MwoI, and StyD4I, as 
shown in Table 4.

Discussion
Since the endemic of Vibrio spp, phenotype variation is 
frequently used to determine or measure pathogenic-
ity, intraspecies diversity by utilizing metabolizable sub-
strates [45], colony morphotype [46], the presence of 
membrane proteins and lipopolysaccharide [47], extra-
cellular enzymes such as cytolysins [48, 49], siderophores 
[50], virulence in mice [51], and resistance to animal 
host defense systems [52, 53], genetic divergence remain 
a prompt strategy for virulence determination. The pre-
liminary phenotypic only provides appreciated evidence 
about the incidence and occurrence of phenotypic identi-
ties among V. strains. However, there is still a dearth of 
information on the characteristics of species mutation in 

order to predict strain pathogenicity and antibiotic treat-
ment efficacy accurately.

The nucleotide and amino acid alignment results depict 
a diversity of alterations and mutations in the V. vulnifi-
cus virulence (vcgCPI) gene. Among the alterations, only 
the mutation at codons 309 nucleotide bases significantly 
affects the protein function of S (serine) compared to 
others. However, epidemiological studies have implicated 
the vcgC in clinical Vibrio isolates while  the vcgE docu-
mented in environment isolates [39, 54]. The nucleotide 
polymorphisms observed within the genetic loci vcg 
allele show an incomparable likeness to the genetic char-
acteristics frequently found in environmental isolates, 
as previously reported by D’souza et  al. 2020) [55]. The 
nucleotides and amino acid alignment of [strA] Ami-
noglycoside 3′-phosphotransferase show no mutation 
or alteration in the gene sequences, possibly due to the 
highly conversed regions of the targeted gene.

The gene [aadA] Aminoglycoside (3′′) (9) adenylyl-
transferase shows a significant mutation at codon 482, 
which indicates a change in protein function of (Lys/K) 
Lysine found in the reference bacteria to (Arg/R) Argi-
nine in the isolate a463. This observation may play a 
complementary protagonist in advancing high levels of 
aminoglycosides (e.g., Kanamycin and Nitrofurantoin) 
resistance, similar to the report shown by Minarini and 
Darini (2012) quinolone and ciprofloxacin resistance. 
Similarly, a significant mutation was observed in (sul 1 
and 11) Dihydropteroate synthase type 1 and 11 genes at 
codons 102 and 140 of the isolate S_414. This alteration 
in codon 102 (T-C) was insignificant, as no implication 
was found in the putative amino acid. Nevertheless, the 
alteration at codon 140 (C–A) significantly affects the 
protein function causing a mutation of (Pro/P) Proline 
to (His/H) Histidine. This result is similar to the previous 
findings by Weigel and colleagues, which suggested that a 
substitution or mutation in an amino acid is sufficient to 
generate a significant degree of resistance to antibiotics, 

Table 3 Restriction enzymes length polymorphism analysis 
of (vcgCPI) using five different digestive enzymes on the three 
isolates of a virulence-correlated gene (vcgCPI)

A CP071393 K. michigan; B CP036175_K. huaxiensis

Restriction enzymes Isolates (sequence genes) Positive 
control 
from NCBI

VC_180 VC_181 VC_1072 A B

DpnI 4 4 4 4 4

Hinf1 2 2 2 2 3

HinP1I 3 4 3 2 2

MwoI 4 5 4 4 5

StyD4I 3 2 3 1 1

Combined restriction 6 4 6 6 6

Table 4 Restriction enzymes length polymorphism analysis of Sul 1 and 11 using five different digestive enzymes on the sequence 
resistance genes of 12 isolates of protein dihydropteroate synthase type 1 and type II genes (Sul 1 and 11)

RE restriction enzymes; CRE combined RE; PC positive control from NCBI

RE Isolates (sequence genes) PC NCBI

S_7 S_8 S_80 S_81 S_95 S_406 S_414 S_706 S_717 S_740 S_742 S_750 A B

DpnI 4 5 6 5 5 6 5 5 6 5 5 5 4 4

HinP1I 5 8 7 7 7 5 7 7 8 8 5 7 6 6

NlaIV 4 5 3 4 4 0 5 5 5 4 4 4 4 4

MwoI 7 8 7 6 7 4 8 7 6 6 7 6 6 6

StyD4I 4 3 3 3 3 2 3 3 5 5 3 3 3 3

CRE 3 5 5 4 4 5 4 2 3 4 4 3 4 4
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such as mutations in (Ser-83) for nalidixic acid resist-
ance and in Thr83-Ile resistance to fluoroquinolones [56], 
alteration in Thr83-Ile resistance to ciprofloxacin [57].

The application of the RFLP technique to determine 
genomic relatedness of virulence or resistance genes and 
determine polymorphism among isolated Vibrio spp 
at various loci have been previously documented, e.g., 
[58, 59]. The results of restriction enzyme digestions by 
DpnI, EcoRV, Hinf1, HinP1I, NlaIV, and Sac11 as well as 
in combinations as utilized in this study revealed that the 
majority of the Vibrio strains and the reference strains 
examined share similarity among the selected endo-
nucleases. Specifically, the gene (aac(3)-IIa, (aacC2)a 
showed a difference of two bands when digested by hint 
restriction enzymes. This homology may be due to spon-
taneous translucent isolate, as previously observed by 
[51, 60]. Most Vibrio strains that have been previously 
reported are translucent strains, which are different from 
their opaque parent in the number of capsules produced. 
Therefore, the results from this study may be very likely 
due to the differences in physiological characteristics 
exhibited by these recent isolates. The different banding 
patterns observed in this study imply that these isolates 
possess unique pathogenic/biochemical characteristic 
polymorphism. As the different restriction enzymes (i.e., 
DpnI, EcoRV, Hinf1, HinP1I, NlaIV, Sac11) tested with 
nucleotide sequences from three isolates with the same 
(aac(3)-IIa, (aacC2) an Aminoglycoside N(3)-acetyltrans-
ferase III gene, the enzymes (DpnI, HinP1I, NlaIV, MwoI, 
StyD4I) tested on several isolates protein dihydropter-
oate synthase type 1 and type II (Sul 1 and 11) genes, and 
vcgCPI of which the endonuclease(s) produced polymor-
phic locus of DNA fragments.

Pulsed-field gel electrophoresis (PFGE) has been effec-
tively used to discriminate strains of Vibrio as a powerful 
tool for differentiating bacterial strains [58, 61–63] after 
genomic cleavage of site-specific, low-frequency restric-
tion endonucleases, exploiting the basic principle of 
movement of large DNA fragments in gels. This approach 
is extensively applied in epidemiological studies and 
less relatively employed in environmental investigation. 
Therefore, the observed polymorphism among RFLP 
profiles for tested genes in these environmental Vibrio 
strains indicates a polymorphic pathogenic/virulence rel-
evance and treatment/management pattern.

Conclusion
In conclusion, the isolates recovered from the surface water 
in greater Bushenyi encompass a very diverse population of 
Vibrio spp strains, and those specific subclasses of strains 
are pathogens that appear to be linked with human dis-
ease. The described virulence and resistance determinants 
possess specific polymorphic locus that may be relevant 

in pathogenomics, pharmacogenomics, vaccine produc-
tion, and the control of strains in the future. Ultimately, this 
approach can provide scientific and rational bases for risk 
assessment.
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