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Abstract 

Background Tuftelin 1 (TUFT1) gene is important in the development and mineralization of dental enamel. The study 
aimed to identify potential functionally deleterious non-synonymous SNPs (nsSNPs) in the TUFT1 gene by using differ-
ent in silico tools. The deleterious missense SNPs were identified from SIFT, PolyPhen-2, PROVEAN, SNPs & GO, PAN-
THER, and SNAP2. The stabilization, conservation, and three-dimensional modeling of mutant proteins were analyzed 
by I-Mutant 3.0, Consurf, and Project HOPE, respectively. The protein–protein interaction using STRING, GeneMANIA 
for gene–gene interaction, and DynaMut for evaluating the impact of the mutation on protein stability, conformation, 
and flexibility.

Results Eight deleterious nsSNPs (E242A, R303W, K182N, K123N, R117W, H289Q, R203W, and Q107R) out of 304 
were found to have high-risk damaging effects using six in silico tools. Among them, K182N and K123N alone had 
increased stability, whereas E242A, R303W, R117W, H289Q, Q107R, and R203W exhibited a decrease in protein stability, 
based on DDG values. Meanwhile, all the eight deleterious nsSNPs altered the size, charge, hydrophobicity, and spatial 
organization of the amino acids and predominantly had alpha helix domains. These deleterious variants were located 
in highly conserved regions except R203W. Protein–protein interaction predicted that TUFT1 interacted with ten 
proteins that are involved in enamel mineralization and odontogenesis. Gene–gene interaction network showed 
that TUFT1 is involved in physical interactions, gene co-localization, and pathway interactions. DynaMut ΔΔG values 
predicted that five nsSNPs were destabilizing the protein, ΔΔG ENCoM values showed a destabilizing effect for all 
mutants, and seven nsSNPs increased the molecular flexibility of TUFT1.

Conclusion Our study predicted eight functional SNPs that had detrimental effects on the structure and function 
of the TUFT1 gene. This will aid in the development of candidate deleterious markers as a potential target for disease 
diagnosis and therapeutic interventions.

Keywords SNPs, TUFT1 gene, In silico analysis

Background
The genotypic and phenotypic variation between indi-
viduals arises through genetic mutation. The genetic 
variation provides the diversity within and across pop-
ulations. The source variance in a genome known as 

single-nucleotide polymorphism (SNP) is the most abun-
dant genetic variation in the human genome [1]. They 
can modify protein function and serve as important 
markers for understanding diseases [2]. Among these 
SNPs, non-synonymous SNPs (nsSNPs) occurring in the 
functional exonic regions result to changes in amino acid 
composition. These mutations have detrimental effects 
such as reducing protein solubility or destabilizing pro-
tein structure which affects the protein function. They 
can influence gene regulation by affecting transcription 
and translation processes [3].
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TUFT1, an acidic protein highly conserved and located 
on chromosome 1q21-31 with 13 exons and a phos-
phorylated glycoprotein of 390 amino acids, was ini-
tially discovered and sequenced from a complementary 
DNA library enriched in bovine ameloblasts. They are 
involved in the development and maturation of extra-
cellular enamel which leads to the mineralization of the 
epithelial tissue of the vertebrate teeth [4]. It is associ-
ated with diseases like amelogenesis imperfecta (AI) and 
dental caries. AI is the most common hereditary defect in 
enamel formation. The main structural proteins involved 
in enamel formation are amelogenin, tuftelin, enamelin, 
and ameloblastin. The mutation in the genes coding for 
these structural proteins is known to be associated with 
different types of AI [5]. They play a vital role in dental 
enamel mineralization and are implicated in caries sus-
ceptibility. Studies showed a positive association between 
genetic variation in the enamel proteins and higher car-
ies experience [6]. TUFT1 is also involved with adapta-
tion to hypoxia, mesenchymal stem cell function, and 
neuronal differentiation associated with neurotrophin 
nerve growth factor. The structural constituent of the 
tooth enamel includes tuftelin. They are secreted at the 
early stage of enamel formation and present in extracel-
lular enamel associated with the crystal component. 
TUFT1 is expressed in the morula, embryonic stem cells, 
and soft tissues, such as brain neurons, testis, suprarenal 
gland, liver, kidneys, and tumor cells [7, 8]. It is found 
that TUFT1 expression induced by human HepG2 and 
MCF-7 cell lines when treated with 1%  O2 in the hypoxic 
environment causes tumorigenesis [9].

A study reported one nonsynonymous mutation in 
exon 1 of TUFT1 by mutation analysis associated with 
high caries experience in Turkish samples [6]. Previous 
epidemiological studies have shown that the association 
between caries susceptibility and genetic variations at 
TUFT1 is involved in the enamel [10]. The TUFT protein 
in the developing enamel is a candidate gene involved in 
inherited enamel defects. Considering the above facts, 
the presence of SNPs in TUFT1 can be able to influence 
its expression and functions. This study aims towards 
examining the potential effect of nsSNPS in TUFT1 pro-
tein using a computational approach and screening del-
eterious nsSNPs by in silico method for further analysis.

Material and methods
Retrieving nsSNPs
nsSNPs of the TUFT1 gene were obtained from the 
National Center for Biotechnology Information (NCBI) 
dbSNP database (http:// www. ncbi. nlm. nih. gov/ snp/). 
the). SNPs of TUFT1 were also retrieved from the 
ENSEMBL database. The TUFT1 protein primary 

sequence (UniProt accession number: Q9NNX1) was 
retrieved from the UniProt database.

Prediction of deleterious nsSNPs by different 
bioinformatics tools
The effects of nsSNPs on the TUFT1 gene were analyzed 
using the following bioinformatics tools: SIFT and Poly-
Phen-2 were used to predict the deleterious nsSNPs. To 
increase the accuracy of the in silico approaches and for 
prioritizing deleterious nsSNPs, nsSNPs that were found 
to be deleterious by SIFT and PolyPhen-2 were further 
analyzed by PROVEAN, SNPs & GO, PANTHER, and 
SNAP2 tools.

SIFT (Sorting Intolerant from Tolerant)
SIFT (https:// sift. bii.a- star. edu. sg/) [11] is a power tool 
used to determine whether a change in amino acid sub-
stitution alters the protein function based on sequence 
homology and the physical characteristics of amino 
acids. The rsIDs of nsSNPs from NCBI’s dbSNP database 
were submitted as query sequences to SIFT and multi-
ple alignment information was used to analyze tolerated 
and deleterious substitutions in every position of the 
query sequence. The result provides nsSNPs as deleteri-
ous or tolerated with a SIFT score. A score ≤ 0.05 indi-
cates deleterious and those > 0.05 indicates tolerated. The 
deleterious nsSNPs were further analyzed to identify the 
damaging ones.

Polyphen‑2 server (polymorphism phenotyping v2.0)
PolyPhen-2 (http:// genetics.bwh.harvard.edu/pph2/) 
[12] is an online tool that predicts the effects of amino 
acid substitutions on the structure and function of 
the protein using structural information and multiple 
sequence alignment. The results are shown as “PROB-
ABLY DAMAGING” with a score of 0.9—1, “POSSIBLY 
DAMAGING” with a score of 0.4–0.8, or “Benign.”

Provean server (Protein Variation Effect Analyzer)
The biological impact of an amino acid substitution on a 
protein was predicted using the PROVEAN software tool 
(http:// prove an. jcvi. org/ index. php) [13]. It predicts the 
damaging effect of protein variation in in-frame inser-
tions, deletions, and multiple amino acid substitutions 
other than single amino acid substitutions. The default 
threshold in the results provided by the software is − 2.5, 
that is variants with a score ≤  − 2.5 are considered “del-
eterious” while scores >  − 2.5 are considered “neutral.”

SNPs&Go server
The disease relationship with the studied SNPs was ana-
lyzed using this online web server (http:// snps. biofo 
ld. org/ snps- and- go/ snps- and- go. html) [14]. The result 

http://www.ncbi.nlm.nih.gov/snp/).the
http://www.ncbi.nlm.nih.gov/snp/).the
https://sift.bii.a-star.edu.sg/
http://provean.jcvi.org/index.php
http://snps.biofold.org/snps-and-go/snps-and-go.html
http://snps.biofold.org/snps-and-go/snps-and-go.html
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is based on the combination of Panther result, PHD-
SNP result, and SNPs&GO result. It predicts whether 
the mutation is disease-related or neutral, the reliability 
index (RI), and disease probability.

PANTHER (Protein Analysis Through Evolutionary 
Relationship)
PANTHER (https:// www. panth erdb. org/ tools) [15] was 
used to evaluate the nsSNP’s functional impact on the 
protein based on their position-specific evolutionary 
relationship. FASTA sequence and amino acid changes 
were included in the input query.

SNAP2 (screening for non‑acceptable polymorphisms)
SNAP2 (https:// rostl ab. org/ servi ces/ snap2 web) [16] pre-
dicts the functional effects of nsSNPs based on a machine 
learning tool called a neural network that incorporates 
evolutionary data, expected secondary structure, and 
solvent accessibility. The FASTA sequence of TUFT1 was 
provided as the input query.

Analysing the effect on protein stability
I-Mutant server (http:// gpcr2. bioco mp. unibo. it/ cgi/ predi 
ctors/I- Mutan t3.0/ I- Mutan t3.0. cgi) [17] calculates the 
protein stability between the wild type and mutant pro-
teins by computing the changes in the Gibbs free energy 
which can be due to the single amino acid change. This 
support vector machine utilizes an SVM prediction algo-
rithm to predict protein stability. The energy difference 
was calculated based on the predicted DDG value. To 
predict the impact of a mutation on protein stability, the 
FASTA sequence, the mutation position, and the amino 
acid change were given as input.

Evolutionary conservation analysis of nsSNPs
The evolutionary conservation of amino acid positions in 
a protein molecule was predicted by the Consurf server 
(https:// consu rf. tau. ac. il) [18] based on the phyloge-
netic relationships between homologous sequences. By 
using an empirical Bayesian method, the predicted evo-
lutionary conservation scores have a confidence interval 
and are classified as variable (1–4 scores), intermediate 
(5–6 scores), and conserved (7–9 scores). The FASTA 
sequence of TUFT1 was given as the input for identifying 
the evolutionary conservation of the predicted deleteri-
ous nsSNPs.

Protein secondary structure prediction
The PSIPRED workbench (http:// bioinf. cs. ucl. ac. uk/ 
psipr ed/) [19] makes available several protein annotation 
tools. The protein structure prediction server PSIPRED 
was used for secondary structure prediction. The FASTA 
sequence of the TUFT1 protein was the input format. 

The server employs an artificial neural network and PSI-
BLAST alignment results for protein secondary struc-
ture prediction. The MEMSAT-SVM transmembrane 
topology predictor uses a support vector machine and 
identifies the transmembrane proteins from the protein 
sequence as an input and predicts the involvement of the 
transmembrane helix in pore formation. By using Dom-
pred, PSI-BLAST sequence alignment domain prediction 
using an E value cutoff of 0.01 gives sensitivity and selec-
tivity of domain boundary prediction.

Prediction of structural effect of nsSNPs
Project HOPE web server (http:// www. cmbi. ru. nl/ hope/ 
home) [20] was used to predict the structural impact of 
the nsSNPs of TUFT1. Project HOPE identifies the struc-
tural characteristics of the point mutations of the native 
protein by utilizing the tertiary structure available in the 
UniProt database and Distributed Annotation System 
(DAS) servers. We used the protein sequence of TUFT1 
as the input.

Prediction of protein–protein interactions
A pre-computed database STRING (https:// string- db. 
org/) [21] was used to determine protein–protein inter-
actions of TUFT1 to understand the function, structure, 
molecular action, and regulation of the protein. The pro-
tein sequence was used as an input query.

Prediction of gene–gene interaction
GeneMANIA (https:// genem ania. org/) [22] is a web 
interface that utilizes a large collection of functional 
association data to quickly and accurately detect gene-
gene interactions connected to the input gene. Asso-
ciation data consist of protein and genetic interactions, 
co-localization, co-expression, pathways, and protein 
domain similarity. GeneMANIA predicted the gene-gene 
interaction network of the TUFT1 gene.

3D Structure prediction
The 3D structure was predicted using an artificial intel-
ligence system, AlphaFold (https:// alpha fold. ebi. ac. uk/) 
[23, 24] which can predict protein structures computa-
tionally with accuracy and speed. The UniProt ID of the 
TUFT1 protein was used as an input to get the alphaFold 
model.

Determining the protein stability, flexibility, 
and interatomic interactions
The structure-based tool DynaMut (http:// biosig. unime 
lb. edu. au/ dynam ut/) [25] was used to estimate the effect 
of point mutation on the stability and flexibility of pro-
teins based on interatomic interactions. A mutation list 
and the wild-type structure in PDB format were given as 

https://www.pantherdb.org/tools
https://rostlab.org/services/snap2web
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi
https://consurf.tau.ac.il
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
http://www.cmbi.ru.nl/hope/home
http://www.cmbi.ru.nl/hope/home
https://string-db.org/
https://string-db.org/
https://genemania.org/
https://alphafold.ebi.ac.uk/
http://biosig.unimelb.edu.au/dynamut/
http://biosig.unimelb.edu.au/dynamut/
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input. To determine the difference in free energy change 
(ΔΔG) between the wild-type (WT) and mutant-type 
(MT) structures, DynaMut uses normal mode analysis 
(NMA). In addition to its prediction, DynaMut also pro-
vides structure-based predictions for mCSM [26], SDM 
[27], and DUET [28] as well as the ΔΔG prediction of an 
elastic network contact model (ENCoM) based on NMA. 
Additionally, DynaMut predicts the mutation as more or 
less flexible using ENCoM-based difference in vibrational 
entropy (ΔΔSVib).

Result
The SNP database in NCBI contains both synonymous 
and non-synonymous polymorphisms. TUFT1 gene has 
a total of 10,860 SNPs, out of which we selected 304 mis-
sense nsSNPs for our investigation. Using various in sil-
ico prediction tools, we analyzed the deleterious nsSNPs 
and compared their scores with each tool. Various SNPs 
of TUFT1 were predicted using the variant effector pre-
dictor of ENSEMBLE as shown in Fig. 1.

Prediction of deleterious nsSNPs by SIFT program
A total of 304 nsSNPs were selected for SIFT analysis. 
According to SIFT, the considered deleterious nsSNPs 
score is 0.05 or below. Among the 304 nsSNPs, 95 nsS-
NPs were predicted as damaging by SIFT tool whereas 
the remaining nsSNPs were predicted as “tolerated.”

Prediction of functional effects of nsSNPs by Polyphen2
The deleterious nsSNPs filtered through the SIFT server 
were then subjected to the Polyphen server. Out of the 
95 nsSNPs, 15 were considered to be “PROBABLY DAM-
AGING” with a score of 0.9–1, and 24 were observed as 
“POSSIBLY DAMAGING” with a score of 0.4–0.8. To 
increase the accuracy of the prediction, the results of 
both SIFT and Polyphen were combined and these del-
eterious SNPs of TUFT1 were considered for further 
analysis with other in silico tools.

Prediction of nsSNPs by PROVEAN, SNPs & GO, PANTHER, 
and SNAP2
The 15 nsSNPs determined by SIFT and Polyphen were 
subjected to PROVEAN, SNPs&GO, and PANTHER 
software tools, respectively. Using PROVEAN predic-
tion, 9 nsSNPS were found to be deleterious based on a 
default threshold score. According to SNPs&GO, 8 nsS-
NPs were associated with diseases. Moreover, via the 
PANTHER software tool, 2 nsSNPs were predicted as 
probably damaging and 13 were probably benign. The 
SNAP2 tool predicted 4 neutral nsSNPs and 11 nsSNPs 
were diseases associated. Deleterious and disease-related 
nsSNPs were investigated further by at least five in silico 
software. Finally, eight nsSNPs (rs4994616, rs148582735, 
rs149655288, rs149655288, rs150612239, rs369673392, 
rs370920800, rs374164451) were identified as the most 
deleterious and are shown in Table 1.

Protein stability prediction by I‑Mutant 3.0
I-Mutant 3.0 analysis of the nsSNPs revealed that six of 
the eight deleterious nsSNPs decreased the stability of 
the TUFT1 protein as shown by its score, which was < 0 
for for every mutation. Table  2 displays the free energy 
change (ΔΔG) values, along with predictions and relative 
indexes.

Conservation profile of deleterious nsSNPs by ConSurf
The functional, structural, and evolutionary conservancy 
of amino acid residues of the TUFT1 were recognized 
by the ConSurf server (Fig.  2). We found that E242A, 
R303W, R117W, H289Q, and Q107R are functional resi-
dues and highly conserved and exposed. K182N and 
K123N are conserved and exposed residues but R203W 
is variable and exposed residue.

Prediction of secondary structures by PSIPRED server
The distribution of the alpha helix, beta sheet, and coils 
in the TUFT1 secondary structure was predicted by 
PSIPRED. The results revealed a mixed distribution of 

Fig. 1 Prediction of TUFT1 gene by the variant effector predictor of ENSEMBEL
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coil, strand, and alpha helix. As generated by PSIPRED, 
the helix was shown to be the main secondary structural 
motif, followed by coil and strand as shown in Fig.  3a. 
The PSIPRED prediction along with the transmembrane 

topology and aatypes of the eight deleterious nsSNPs 
were given in Table  3. The DOMPRED output gives a 
graph that utilizes the PSI-BLAST aligned termini algo-
rithm. The graph shows secondary structure regions, and 
peaks in the aligned termini profile represent regions that 
form a structural domain boundary. The highest peaks in 
the graph correspond to the putative domain boundaries 
(Fig. 3b). MEMSATSVM predictions include a prediction 
of pore-lining helices, and the output was the membrane 
topology annotated with the predicted helix coordinates 
(Fig. 3c). All the damaging substitutions are alpha helix, 
and their transmembrane topology was extracellular and 
also they are polar.

Structural impact of nsSNPs by Project HOPE
Project HOPE revealed the wild-type and mutant amino 
acid differences in terms of physicochemical properties 
such as specific size, charge, hydrophobicity value, loca-
tion of the conservation, and the impact of variant amino 

Table 1 Deleterious nsSNP prediction for TUFT1 by in silico prediction tools

S. no rs ID Amino 
acid 
position

SIFT (score) Polyphen 2 (score) Provean (score) SNPs & Go RI) Panther (Pdel) SNAP2 (score)

1 rs4994616 E242A Deleterious
0.007

Probably damaging 
(0.990)

Deleterious (− 4.943) Disease
2

Probably benign
0.19

Effect
9

2 rs41310883 T175M Deleterious
0.01

Possibly damaging 
(0.771)

Deleterious (− 2.692) Neutral
4

probably benign
0.19

Neutral
-12

3 rs140180310 S122N Deleterious
0.038

Probably damag-
ing (1)

Neutral (− 2.115) Neutral 3 probably benign
0.27

Neutral
-29

4 rs140412170 P376L Deleterious
0.01

Probably damaging 
(0.999)

Neutral (− 2.094) Disease
4

probably benign
0.19

Effect
41

5 rs148582735 R303W Deleterious
0.001

Probably damag-
ing (1)

Deleterious (− 6.418) Disease
2

probably benign
0.19

Effect
28

6 rs149655288 K182N Deleterious
0.023

Possibly damaging 
(0.954)

Deleterious (− 2.728) Neutral
5

Probably damaging 
(0.57)

Effect
32

7 rs149655288 K123N Deleterious
0.042

Probably damag-
ing (1)

Deleterious (− 2.665) Neutral
7

Probably damaging 
(0.74)

Effect
18

8 rs150612239 R117W Deleterious
0.005

Probably damag-
ing (1)

Deleterious (− 5.596) Disease
5

probably benign
0.19

Effect
53

9 rs189101009 E93K Deleterious
0.019

Probably damaging 
(0.999)

Neutral (-2.276) Disease
3

probably benign
0.19

Effect
30

10 rs368431369 R386Q Deleterious
0.021

Probably damag-
ing (1)

Neutral (− 1.549) Neutral
4

probably benign
0.19

Effect
31

11 rs369673392 H308Q Deleterious
0.022

Probably damag-
ing (1)

- - - -

12 rs369673392 H289Q Deleterious
0.025

Probably damaging 
(0.999)

Deleterious (− 3.341) Disease 3 probably benign
0.19

Effect
1

13 rs370920800 R203W Deleterious
0.005

Probably damaging 
(0.992)

Deleterious (− 4.163) Disease 2 probably benign
0.19

Effect
21

14 rs373535548 R206Q Deleterious
0.027

Possibly damaging 
(0.508)

Neutral (− 1.214) Neutral 4 probably benign
0.19

Neutral
 − 24

15 rs374164451 Q107R Deleterious
0.039

Probably damaging 
(0.997)

Deleterious (− 2.776) Disease 0 probably benign
0.19

Effect
14

Table 2 I-Mutant prediction based on DDG value and binary 
classification

rsID Aminoacid 
change

DDG value 
(Kcal/mol)

Prediction Relative 
index 
(RI)

rs4994616 E242A  − 0.17 Decrease 3

rs148582735 R303W  − 0.06 Decrease 1

rs149655288 K182N 0.29 Increase 7

rs149655288 K123N 0.48 Increase 0

rs150612239 R117W  − 0.42 Decrease 5

rs369673392 H289Q  − 0.19 Decrease 4

rs370920800 R203W  − 0.32 Decrease 4

rs374164451 Q107R  − 0.04 Decrease 4
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acid residues on the domain. The results are listed in 
Table 4.

Analysis of protein–protein interaction
The STRING network revealed that TUFT1 interacts 
with 10 proteins which include TFIP11(Tuftelin-inter-
acting protein 11) AMBN (Ameloblastin), RABGAP1 
(RabGTPase-activating protein 1), ENAM (Enamelin), 
AMELX (Amelogenin), RABGAP1L (RabGTPase-acti-
vating protein 1-like), MMP20 (Matrix metalloprotein-
ase-20), SMC6 (Structural maintenance of chromosomes 
protein 6), DHX15 (Pre-mRNA-splicing factor ATP-
dependent RNA helicase), ALOX5AP (Arachidonate 
5-lipoxygenase-activating protein) (Fig.  4). Except for 
RABGAP1L and SMC6, the other 8  proteins showed 
higher interaction based on the confidence score gener-
ated by experimental validation and text mining. Due 
to the nsSNP variants in TUFT1, amino acid alterations 
may also have an impact on the function of the interact-
ing molecules.

Analysis of gene–gene interaction
Figure  5 depicts the gene–gene interaction network of 
the TUFT1 gene. GeneMANIA revealed that 11 genes 
had physical interactions, 8 genes co-localize, 1 in path-
way interactions, and 2 genes shared a protein domain 
with TUFT1.

3D Structure prediction by AlphaFold
An individual residue confidence score (pLDDT) 
between 0 and 100 is generated by the AlphaFold algo-
rithm. The majority of the 3D structural region cor-
responds to α-helical domains and has extremely high 
confidence (pLDDT > 90). The remaining components 
of the model are depicted as unresolved loops with low 
(70 > pLDDT > 50) and extremely low (pLDDT 50) scores 
(Fig. 6).

Predicting the impact of TUFT1 nsSNpson protein 
conformation, flexibility, and stability by DynaMut
The DynaMut server was used to evaluate the predicted 
interatomic interactions of eight harmful nsSNPs that 
were chosen from upstream analyses. The DynaMut 
server showed the predictions of the ΔΔG and Δ vibra-
tional entropy energy by ENCoM between the mutant 
and wild-type. According to the predicted DynaMut 
ΔΔG values, R117W, H289Q, and Q107R were stabi-
lizing the TUFT1 protein when compared to the wild 
type. The ΔΔG SDM value decreased in E242A, K182N, 
and K123N when compared to other mutants, and ΔΔS 
ENCoM showed destabilizing effect for all mutants. 
Amino acid alterations were detected for all the vari-
ants from ΔΔSVib ENCoM values, indicating enhanced 
molecular flexibility except for R117W. The prediction 
from the above server is given in Table 5. The differences 

Fig. 2 Evolutionary conservation analysis of amino acid residues of TUFT1 by ConSurf. The color-coding bar represents the conservation scheme
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in the interatomic interactions such as hydrogen bonds 
and ionic interactions of the wild-type and the mutant 
are depicted in Fig. 7.

Discussion
Genetic differences between individuals can influence 
therapeutic response and drug-induced adverse effects 
in addition to disease susceptibility. Studying the effects 
of functional exonic SNPs in proteins correlated with the 
disease can help in developing new drugs to reverse the 
consequences of such mutations in the population. The 

Fig. 3 TUFT1 Secondary Structure Prediction using PSIPRED server. a Secondary structure showing a helix, coil, and strand. b Domain prediction 
using DomPred. c Schematic diagram of the MEMSAT3

Table 3 Secondary structure prediction of TUFT1 by PSIPRED 
server

Amino acid 
change

PSIPRED MEMSAT3 (transmembrane 
topology and helix prediction)

aatypes

E242A Helix Extracellular Polar

R303W Helix Extracellular Polar

K182N Helix Extracellular Polar

K123N Helix Extracellular Polar

R117W Helix Extracellular Polar

H289Q Helix Extracellular Polar

R203W Helix Extracellular Polar

Q107R Helix Extracellular Polar
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Fig. 4 Protein–protein interaction network of TUFT1 using STRING

Fig. 5 The functional gene–gene interaction network of TUFT1 
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current study predicted the consequences of nsSNPs of 
TUFT1 using various in silico methods.

The nsSNPs of the TUFT1 gene were initially deter-
mined using sequence-based methods such as SIFT and 
POLYPHEN and those predicted as deleterious were 
validated using PROVEAN, SNPs&GO, and PANTHER. 
The SNPs&GO gives the prediction of both PHD-SNP 
and PANTHER in addition. Differentiating the scores 
of all the in silico tools, E242A, R303W, K182N, K123N, 

R117W, H289Q, R203W, and Q107R, were found to be 
highly deleterious. Screening the 304 nsSNPs through six 
in silico tools, eight highly damaging nsSNPs were identi-
fied. These eight deleterious nsSNPs include rs4994616, 
rs148582735, rs149655288, rs149655288, rs150612239, 
rs369673392, rs370920800, and rs374164451.

The biological mechanism in protein, such as stabil-
ity or folding, is generally controlled by conserved resi-
dues [29]. Enzymatic sites include functional amino 

Fig. 6 AlphaFold structure of TUFT1 (Uniprot accession number: Q9NNX1)

Table 5 Interatomic interaction of mutant residues and native TUFT1

Amino 
acid 
change

ΔΔG DynaMut (kcal/
mol)

ΔΔG ENCoM (kcal/
mol)

ΔΔG mCSM (kcal/
mol)

ΔΔG SDM (kcal/mol) ΔΔG DUET (kcal/mol) ΔΔSVibENCoM (kcal.
mol−1.K−1)

E242A  − 0.319 (destabilizing)  − 0.116 (destabilizing)  − 0.634 (destabilizing)  − 0.410 (destabilizing)  − 0.464 (destabilizing) 0.145 (increase 
of molecule flexibility)

R303W  − 0.283 (destabilizing)  − 0.099 (destabilizing)  − 0.047 (destabilizing) 0.090 (stabilizing)  − 0.211 (destabilizing) 0.124 (increase 
of molecule flexibility)

K182N  − 0.059 (destabilizing)  − 0.133 (destabilizing) 0.046 (stabilizing)  − 0.800 (destabilizing) 0.174 (stabilizing) 0.166 (increase 
of molecule flexibility)

K123N  − 0.066 (destabilizing)  − 0.005 (destabilizing)  − 0.055 (destabilizing)  − 0.430 (destabilizing) 0.153 (stabilizing) 0.007 (increase 
of molecule flexibility)

R117W 0.244 (stabilizing) 0.102 (destabilizing)  − 0.342 (destabilizing) 0.100 (stabilizing)  − 0.408 (destabilizing)  − 0.128 (decrease 
of molecule flexibility)

H289Q 0.196 (stabilizing)  − 0.097 (destabilizing) 0.726 (stabilizing) 0.250 (stabilizing) 0.869 (stabilizing) 0.121 (increase 
of molecule flexibility)

R203W  − 0.223 (destabilizing)  − 0.028 (destabilizing)  − 0.423 (destabilizing)  − 0.430 (stabilizing)  − 0.365 (destabilizing) 0.035 (increase 
of molecule flexibility)

Q107R 0.187 (stabilizing)  − 0.056 (destabilizing)  − 0.099 (destabilizing) 0.050 (stabilizing) 0.251 (stabilizing) 0.069 (increase 
of molecule flexibility)
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acids, which exhibit significant protein–protein interac-
tion [30]. Compared to other residues of TUFT1, these 
eight nsSNP amino acid residues have a higher degree 
of conservation. For assessing the deleterious impact, 
we checked that the amino acid changes in these posi-
tions were exposed on the surface of the protein or bur-
ied within the protein and the surface accessibility of the 

residues via the ConSurf web server. The eight amino 
acid positions are exposed structural residues highlight-
ing their potential impact on interaction with other mol-
ecules. Seven variants were evolutionarily conserved 
indicating their role in protein structural stability except 
R203W. Six of the eight nsSNPs were found to reduce the 
stability of TUFT1 revealed by the negative free energy 

Fig. 7 Inter-atomic interaction difference of the wild-type TUFT1 vs the mutants by DynaMut server. Light-green colored native and mutant 
residues are represented as sticks along with nearby residues participating in the interaction. Interactions like hydrogen bonding and ionic 
interactions are represented by dot points in various colors
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change values as predicted in I-Mutant 3.0. This indicates 
they may have an impact on the folded structure of the 
protein. According to literature evidence, both deleteri-
ous SNPs and mutations are frequently found in the helix 
and coil regions and not usually in turns [31]. PSIPRED 
secondary structure analysis of TUFT1 indicated that the 
eight high-risk nsSNPs were found to be alpha helixes.

Findings from the Project Hope software have given 
important details on the potential consequences of mis-
sense SNPs of TUFT1. The substituted amino acids have 
various physiochemical characteristics that could dam-
age the structure of the TUFT1 protein. The change 
in mass and charge of a protein have an impact on the 
spatial and temporal patterns of protein–protein inter-
actions. The difference in charge by the mutation could 
cause the mutant residues and their nearby residues to 
repel one another [32]. As predicted by Project HOPE, 
the mutant residues E242A, K182N, K123N, and H289Q 
are smaller in size than the wild-type residues which 
might interfere with the interaction of other domains 
that are crucial for the protein’s activity. Compared to 
wild-type residue, the mutant residue is more hydropho-
bic in E242A (rs4994616), R303W (rs148582735), R117W 
(rs150612239), and R203W (rs370920800) SNPs. This 
could result in the loss of hydrogen bonds with other 
molecules and might interfere with proper protein fold-
ing. From the STRING tool, TUFT1 had direct interac-
tions with ten different proteins, and 5 proteins among 10 
were found to be involved in the regulation of tooth and 
enamel mineralization and odontogenesis suggesting the 
involvement of TUFT1 in dental fluorosis, dental caries, 
and amelogenesis imperfect as supported [33]. The func-
tional interaction of other genes in the gene–gene inter-
action network may be affected by damaging SNPs of the 
TUFT1 gene.

With high accuracy, AlphaFold predicts 3D protein 
structures and generates a predicted local distance differ-
ence test (pLDDT) on a range from 0 to 100 that meas-
ures confidence for each residue [24]. Based on the local 
distance difference test C (lDDT-C), pLDDT calculates 
the degree of the prediction and experimental structure. 
The DynaMut server gives the change in stability as well 
as the difference in entropy energy between mutant and 
wild-type structures. The structural conformation of the 
TUFT1 protein could be altered by these eight nsSNPs 
and was found to increase the molecular flexibility of the 
protein. These structure-based methods for analyzing the 
impact of mutations on stability offer invaluable infor-
mation on illness and drug resistance variants and direct 
protein engineering efforts [34].

Our study explored the TUFT1 gene polymorphism 
using various in silico tools. In summary, it can be sug-
gested that these eight SNPs (rs4994616, rs148582735, 

rs149655288, rs150612239, rs369673392, rs370920800, 
rs374164451) may affect the TUFT1 protein functions 
since they are found to be both structurally and function-
ally deleterious. Accordingly, prioritizing such SNPs for 
further analysis can be done by systemically analyzing 
their effects through these types of comprehensive stud-
ies. To confirm the deleterious variants of TUFT1, further 
laboratory analysis and in vivo studies are recommended.

Conclusion
Our in silico SNP study identified eight potential high-
risk deleterious nsSNPs of TUFT1, and the variants are 
likely to have an effect on the protein structure and/or 
function. Further wet lab data and genome association 
studies are needed to confirm the functional variants 
to consider as candidate markers in causing oral/dental 
diseases related to TUFT1 for diagnosis and therapeu-
tic interventions.
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