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Abstract 

Background  Colorectal Cancer (CRC) is the third most common cancer type and the second leading cause of can-
cer-related deaths worldwide. However, the existing treatment, as well as prognosis strategies for CRC patients, 
need to be improved in order to increase the chance of survival. Targeted therapies of CRC, as opposed to ordinary 
therapies, target key biological features and pathways of cancerous cells hence minimizing the subsequent damage 
to normal cells. MicroRNAs have been reported to play a crucial role in inhibiting and/or suppressing major pathways 
in various cancer types by targeting transcripts of key genes in such pathways.

Methods  The purpose of this study was to analyze in silico the differentially expressed genes from five microarray 
datasets of patients with CRC. Furthermore, miRNAs were investigated to inhibit cancer cell proliferation and metasta-
sis by targeting a key gene—frizzled receptor 3 (FZD3) in the Wnt signaling pathway.

Results  The Wnt pathway receptor FZD3 is upregulated in CRC along with other pathway genes, which play a critical 
role in tumorigenesis. In contrast, miR-98-5p inhibits the activity of FZD3 by binding directly to the 3′UTR of its mRNA, 
therefore exerting a suppressor effect on colorectal tumors.

Conclusion  The study reveals miR-98-5p as a novel target of FZD3 and an inhibitor of the Wnt signaling pathway 
hence being a potential candidate for developing targeted therapies against CRC.
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Background
In 2020, the World Health Organization (WHO) reported 
that cancer was one of the leading causes of death, claim-
ing nearly ten million lives [1]. Among all types of can-
cer, colon and rectal cancer, also known as colorectal 
cancer (CRC), is the third most commonly diagnosed 
type worldwide, and it caused 935,000 deaths in the year 
2020, making it the second deadliest type of cancer ahead 
of liver, stomach, and breast cancer [2]. As of now, there 
are three main treatment options for CRC: surgical resec-
tion, chemotherapy, immunotherapy, or any combination 
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of these therapies. Nevertheless, the effectiveness varies 
from patient to patient, especially in cases of locally inva-
sive or metastatic cancer. We must therefore understand 
how this disease progresses in order to identify biomark-
ers that can be used to identify potential therapeutic tar-
gets in order to improve the prognosis and treatment of 
CRC patients.

It is possible to improve treatment for CRC with tar-
geted therapeutic agents that target unique biological 
features and pathways involved in tumor progression. In 
contrast to other therapeutics that kill both cancerous 
and normal cells, these work best in cancer treatment 
because they target the biological features of cancerous 
cells only [3]. Several pathways and processes in cancer-
ous cells can be turned off by targeted therapy, including 
angiogenesis, proliferation, apoptosis inhibition, differen-
tiation, the RAS pathway, the Wnt signaling pathway, the 
PI3K pathway, and the cell cycle pathway [4].

A number of studies shown that activation of the highly 
conserved Wnt pathway in a deviant manner is a driv-
ing factor in the tumorigenesis of most human cancers, 
with a strong emphasis on CRC [5]. This pathway con-
trols β-catenin, a key modulator for signal transduction 
in CRC through phosphorylation and ubiquitin-mediated 
degradation. This regulation involves key scaffold pro-
teins such as AXIN and disheveled (DVL) which dis-
rupt the β-catenin destruction complex that is contains 
3 core proteins; adenomatous polyposis coli (APC), gly-
cogen synthase kinase 3 beta (GSK3β), and casein kinase 
1 (CK1) [6]. When the destruction complex is disrupted, 
β-catenin will no longer be degraded hence leading to its 
accumulation as free β-catenin in the cytoplasm (Piawah 
and Venook, 2019b), which is a hallmark of CRC pro-
gression (Cheng et  al. 2019) when it translocates to the 
nucleus [5]. This translocated beta-catenin in association 
with two major transcriptional factors, i.e., T cell factor 
(TCF) and lymphoid enhancer-binding factor (LEF), dis-
places their repressor molecule Groucho. The β-catenin/
TCF/LEF complex, in association with other co-activa-
tors, forms a transcriptional complex that leads to the 
expression of target genes of Wnt, which include MYC, 
CCND1, AXIN2, Cyclin D1, among others [7, 8]. These 
target genes are mostly oncogenes [9]. Moreover, the 
abnormal up-regulation of the Wnt signaling pathway is 
facilitated by APC mutations, which is a negative regula-
tor of this pathway [6]. These mutations mainly lead to 
the loss-of-function of APC hence upregulating the Wnt 
signaling pathway and facilitating CRC cell proliferation 
and enhanced anti-apoptosis abilities through overex-
pression of the target genes of this pathway [9].

Wnt signaling pathway is characterized as either 
canonical, which is β-catenin dependent or non-canon-
ical, which is β-catenin independent. However, the 

initiation of signaling events in both pathways involves 
the binding of Wnt molecules to frizzled receptors and 
other related receptors like the Low-density lipoprotein 
Receptor-related Protein 5/6 (LRP5/6)/ROR2/RYK for 
signal transduction initiation [9]. Frizzled (FZD) is a fam-
ily of 10 transmembrane proteins which serve as recep-
tors of the Wnt pathway, with every FZD member having 
a favored Wnt ligand [10]. Various studies have indicated 
that excessive activation of the Wnt signaling pathway 
may be a result of a loss-of-function mutation in E3 ubiq-
uitin ligases ring-finger protein 43 (RNF43), through 
ubiquitin-mediated degradation blockage of frizzled 
receptors and LRP5/6 co-receptors. Since this is a fre-
quently detected phenomenon in CRC [8], it, therefore, 
indicates that signal transduction by the Wnt pathway 
can be influenced as levels of expression for key com-
ponents of the pathway get altered [5]. Since Wnt is the 
most implicated pathway in CRC, disrupting the pathway 
signal transduction through downregulating the expres-
sion of crucial pathway components such as FZD recep-
tors can be a therapeutic strategy for CRC.

Human frizzled homolog 3 protein (FZD3) is located 
on chromosome 8p21 and is expressed in skeletal mus-
cles, pancreas, cerebellum, stomach, kidney, and among 
other tissues [11]. A number of studies have shown that 
FZD3 is up-regulated in tissues from lung squamous 
cell carcinomas, lymphomas, Ewing sarcomas, and mye-
loma, among other cancers [12, 13]. In their study, Wong 
and colleagues (2013) reported that FZD3 was 100% 
expressed in CRC spacemen, 89% in colorectal adeno-
mas, and 75% in colorectal polyp spacemen [12]. There-
fore, there is no doubt that FZD3 plays a critical role in 
the development and progression of CRC, making it a 
potential candidate for preventative interventions.

Recent studies have demonstrated that microRNAs 
(miRNAs) may be effective inhibitors of proliferation, 
growth, and metastasis of CRC cells by targeting FZD 
receptors and oncogenes [13–15]. These single-stranded 
noncoding RNAs bind to the 3′ untranslated region 
(3′ UTR) of the target gene mRNA, thereby negatively 
regulating its expression. This results in the cleavage of 
the target gene or repression of its translation, thereby 
inhibiting the production of the target protein [14]. The 
interaction of MicroRNAs with FZD mRNAs influences 
the expression of FZD proteins and the Wnt pathway 
as a result (Smith et  al. 2021). Identifying miRNAs that 
inhibit the expression of FZD genes in different cancers is 
a reported therapeutic strategy for human cancer [10]. In 
comparison to other FZD receptors, the FZD3 receptor 
has received relatively little attention in human cancers, 
especially colorectal cancer. It is, therefore, the purpose 
of this study to identify a suitable miRNA target for FZD3 
receptor mRNA and to demonstrate its effectiveness as 
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an inhibitor. The finding of this study would allow the 
clinical evaluation of the potential of miRNA in inhibit-
ing CRC progression and its consideration as a therapeu-
tic strategy in CRC treatment.

Methods
Gene expression datasets retrieval
Microarray data of five gene expression projects for nor-
mal colon and rectum samples were retrieved from the 
Gene Expression Omnibus database (GEO), search-
ing against query words such as colorectal cancer and 
CRC, on 27th September 2021 [16]. The study’s criteria 
for selecting samples were Homo sapiens-derived sam-
ples, excluding cell line experiments (Table  1).  In the 
GSE41657 dataset, there were 12 normal cells, 25 carci-
noma cells, and 51 dysplastic cells. Since dysplastic cells 
are not true carcinoma cells, we only included the normal 
and carcinoma cell samples in our study.

Identification of differentially expressed genes (DEGS)
We used the limma R package (Ritchie et  al. 2015) and 
the GEO2R tool to normalize and identify differentially 
expressed genes in each dataset [22]. DEGs were selected 
in all 5 datasets at log fold change (log FC) = 1 or − 1 and 
P values > 0.05 as the cut-offs. Bioinfokit v2.0.1 tool in 
Python was used to plot volcano plots for DEGs from 
each dataset [23].

Functional enrichment analysis
DEGs were arranged in descending order based on 
their magnitude of Log FC value after obtaining DEGs. 
We analyzed the top 20 DEGs from each dataset for 
their enrichment to understand their in-depth signifi-
cance. The Supplementary Data file mentions details of 
the parameters submission of the top 20 DEGs. Enri-
chr was used to annotate the top 20 DEGs from each 
dataset [24]. Additionally, pathways of the top 20 DEGs 

were further enriched using the online tool Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID), with statistically significant pathways having a 
P value of 0.05 [25].

Protein–protein interactions (PPI) network
STRING (Search Tool for the Retrieval of Interacting 
Genes) server was used to build a network of protein–
protein interactions for DEGs, with the highest confi-
dence score of 0.900 [26]. Network visualization was 
carried out using Cytoscape, version 3.6.1 [27].

Cancer pathway analysis
A further analysis of the enriched pathways and their 
respective genes in CRC was conducted using KEGG 
database, an online resource integrating 18 databases 
categorized into systems, genomic, chemical and health 
information [28]. The pathways involved in cancer were 
examined with particular reference to the highly upregu-
lated genes found among the DEGs of the five datasets.

Gene expression visualization between tumor and normal 
tissues
Gene Expression Display Server-GEDS was used to 
determine gene expression levels in both tumors and 
normal tissues after choosing frizzled receptors (FZD) as 
potential targets [29]. Both TCGA and Microarray DEGs 
were analyzed for frizzled receptors and their expression 
levels. Gene expression levels of a frizzled receptor with 
Log FC > 1 and P value 0.05 were selected as possible tar-
gets [30].

Gene expression validation between CRC and normal 
colorectal tissues
The Cancer Genome Atlas-TCGA (TCGA) database 
was examined for the purpose of validating and improv-
ing the reliability of our results [30]. TCGAbiolinks, a 

Table 1  Characteristics of the datasets

Dataset Total samples Selected samples Platform Reference

GSE25071 50 Normal = 4
Carcinoma = 46

GPL2986 [17]

GSE62321 57 Normal = 18
Carcinoma = 39

GPL97
[HG-U133B]

[18]

GSE8671 64 Normal = 32
Carcinoma = 32

GPL570
[HG-U133_Plus_2]

[19]

GSE41657 88 Normal = 12
Tumor = 25

GPL6480 [20]

GSE39582 585 Normal = 19
Carcinoma = 566

GPL570
[HG-U133_Plus_2]

[21]
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Bioconductor R package, was used to search, download, 
and prepare data for validation [31]. Using Bioconductor 
R package edgeR, DEGs were identified [32]. The cut-off 
criterion for statistically significant filtered DEGs was 
Log2 FC <  − 1 or Log2FC > 1 with a P value < 0.05.

Prediction and enrichment of the target microRNAs
DIANA-microT-CDS was used to predict the target 
miRNAs as well as their functional analysis for the 
identified frizzled receptor [33]. All possible targets 
for the identified frizzled receptor were identified and 

downloaded, with a threshold of 0.7. Further, Micro-
RNA ENrichment TURned NETwork–MIENTUR-
NET and TargetScan were also used for miRNA-target 
enrichment analysis to identify the potential target of 
the selected frizzled receptor and their network-based 
analysis [34, 35].

Results
A total of 14,227 DEGs were obtained from 5 data-
sets after separately analyzing the microarray datasets 
(Table 2 and Fig. 1). Overall, differential gene expression 
was more prevalent in down-regulated genes than in up-
regulated genes. For further analysis, the top 20 genes 
from each dataset were selected from the list of overex-
pressed genes (Table 3).

The Wnt signaling pathway is highly enriched in CRC 
patients
The enrichment analysis of the top 20 DEGs from each 
dataset demonstrated that these genes were involved in 
16 different pathways, taking the cut-off criterion for 
statistically significant pathways being P value < 0.05. 

Table 2  Number of DEGs from each dataset in this study

Dataset No. of upregulated genes No. of 
downregulated 
genes

GSE62321 427 999

GSE41657 1706 2150

GSE39582 1284 1204

GSE25071 1749 1323

GSE8671 1012 2419

Fig. 1  Volcano plots of DEGs. The plots show differential gene expression among the 5 datasets of this study, where red = downregulated genes, 
grey = normal genes, and green = upregulated genes. (A GSE8671, B GSE25071, C GSE39582, D GSE41657, E GSE62321)
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Although a number of pathways related to cancer, such 
as PI3k-Akt, HIF-1 among others, were all enriched 
among the top DEGs in these datasets, Wnt signalling 
was significantly enriched compared to other pathways, 
with genes such as SFRP4, MMP7, among others, being 
involved. The protein–protein interaction network 
revealed that the Wnt signalling pathway genes from 
the five datasets were among the genes with the high-
est number of interactions, for example, MMP7 with 
7 interactions and MMP3 with 9 interactions, when 
combined together and visualized (Fig.  2). Consider-
ing the higher levels of enrichment for Wnt pathway 
genes and their interactions, we hypothesized that inhi-
bition of the pathway could suppress colorectal cancer 
pathogenesis.

Further analysis of the Wnt signalling pathway enrich-
ment in CRC was conducted using KEGG Pathways and 
indicated the pathway serves as a gateway to several key 
genes and pathways in CRC; some of which were iden-
tified among DEGs that were overexpressed in all five 
datasets (Table 3). In this pathway, the Wnt ligand binds 
to frizzled family receptors or ROR1/ROR2 and RYK 
family receptors, stimulating signalling cascades, either 
canonical or non-canonical, that result in transcription of 
the Wnt target genes (Fig. 3). In light of this fact, we nar-
rowed down our hypothesis that inhibiting the expres-
sion of FZD receptors would suppress the binding of 
Wnt ligands and, as a result, inhibit this highly implicated 
signaling pathway.

Pathway and functional analysis of FZD receptors
To test our hypothesis of inhibiting FZD receptors, the 
expression levels of each of the 10 FZD receptor family 
members were compared between normal and cancerous 

colorectal tissues using the Gene Expression Display 
Server (GEDS) and found that FZD receptors have higher 
expression levels in cancerous tissues than normal tis-
sues, with some receptors having a higher expression 
level in CRC than others such as FZD3 (Fig. 4). In addi-
tion to GEDS database, we further analyzed the expres-
sion levels of all FZD family receptors in our study 
dataset and found that FZD3 receptor was up-regulated 
across all 5 datasets, unlike other receptors. To validate 
this result, we further performed TCGA analysis with 
TCGA-COAD and TCGA-READ datasets and found 
FZD3 gene was up-regulated in tumor tissues compared 
to normal ones, with a Log FC that correlates with the 
result of our datasets (Fig.  5). Therefore, downregulat-
ing the FD3 receptor would inhibit the Wnt signaling, 
thereby suppressing tumor proliferation and progression 
in CRC since the interaction between the receptor and 
other proteins will be affected (Fig. 6).

Inhibition of FZD3 receptor using miRNAs
Several studies have identified and reported a number 
of microRNAs (miRNA) as potential frizzled receptor 
inhibitors in CRCs as well as other cancer types when 
miRNAs bind to the 3′ untranslated regions (3′UTRs) 
of target FZD mRNAs and inhibit their post-transcrip-
tional expression. Having identified FZD3 as a candidate 
receptor to inhibit Wnt signaling, further investigations 
were made to identify potential miRNAs which targeted 
the 3′UTR of FZD3 mRNA using computer-based algo-
rithms. Using DIANA-microT-CDS, 606 Homo sapiens 
microRNAs (hsa-miRNAs) with a threshold of 0.7 were 
identified as potential FZD3 targets. The miRTarBase of 
MIENTURNET web tool provided us with five miRNAs 
as potential targets for the FZD3 receptor after further 

Table 3  The top 20 DEGs that were upregulated and downregulated in five datasets

DEGs Genes symbols

GSE62321 GSE41657 GSE39582 GSE25071 GSE8671

Upregulated INHBA, FOXQ1, ASCL2, 
ZFAS1, CRNDE, PABPC1L, 
CTHRC1, CDCA5, 
ADAMTS2, CLDN2, 
CRNDE, BLACAT1, 
CLDN1, PSAT1, SLC6A6, 
EPHX4, SFTA2, DACH1, 
FAM3B, GOLT1A

MMP7, KRT80, PPP6R1, 
IRX5, CABP7, LRRC2, 
CLDN1, RPA4, CD86, 
KLK10, MMP3, ATXN3L, 
CEMIP, RBM22, CA9, 
FABP6, CGB1, FOXQ1, 
REG1A, FAM193B

CDH3, MMP7, MMP3, 
REG1A, DPEP1, SPP1, 
KLK10, INHBA, TACSTD2, 
UBD, KRT23, S100A8, 
CXCL8, SFRP4, S100A9, 
CXCL10, CLDN2, LY6G6D, 
SAA1, LY6E

CDH3, MMP7, MMP3, 
REG1A, DPEP1, SPP1, 
KLK10, INHBA, TACSTD2, 
UBD, KRT23, S100A8, 
CXCL8, SFRP4, S100A9, 
CXCL10, CLDN2, LY6G6D, 
SAA1, LY6E

TCN1, PINB5, CEMIP, 
MMP7, DEFA6, KLK10, 
C2CD4A, CO1B3, DPEP1, 
FOXQ1, MMP3, CLDN2, 
S100A2, MSX2, MSX2, 
ASCL2, CHI3L1, CRNDE, 
CDH3

Downregulated IL6R, CDKN2B, DHRS9, 
PKIB, SLC26A2, OGN, 
PGM5, SORBS2, MFSD4A, 
MYH11, ZBTB7C, LYPD8, 
TRPM6, GCNT2, SCARA5, 
SLC26A2, ST6GALNAC6, 
SYNPO2, B3GALT5, 
SLC51B

GUCA2A, IGLJ3, IGKC, 
IGLV6, IGLL1, IGLJ3, 
LYPD8, STMN2, ADAM-
DEC1, ZG16, CD177, 
GUCA2B, IGHA2, CLDN8, 
CLCA1, B3GALT5-AS1, 
ITLN1, INSL5, GCG, CA1

SLC26A2, TCAF2, ZG16, 
EYA2, CLCA1, ZFP69B, 
ADH1C, AAAS, SLC26A3, 
TRIM74, KCTD17, 
GUCA2A, CD177, CA2, 
MS4A12, AQP8, LYVE1, 
CLCA4, CA1, CDX4

SLC26A2, TCAF2, ZG16, 
EYA2, CLCA1, ZFP69B, 
ADH1C, AAAS, SLC26A3, 
TRIM74, KCTD17, 
GUCA2A, CD177, CA2, 
MS4A12, AQP8, LYVE1, 
CLCA4, CA1, CDX4

PYY, TRPM6, CLCA4, 
CD177, CXCL13, PTL1, 
TPH1, CA4, CHGA, INSL5, 
S4A12, CLDN8, GUCA1, 
TPH1, GUCA2A, AQP8, 
SST, PYY, CA2B, GCG​
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analysis of the identified potential targets. The miRNAs 
include hsa-miR-7856-5p, hsa-miR-3658, hsa-miR-31-5p, 
hsa-miR-98-5p, and hsa-miR-3653-3p. A functional 
enrichment analysis conducted using the MIENTURNE 
web tool found that only 2 of the 5 miRNAs examined 

were enriched in the Wnt signaling pathway. These two 
miRNAs are hsa-miR-31-5p and hsa-miR-98-5p. Then, 
based on recently published literature, the two micro-
RNAs were further studied and Hsa-miR-98-5p was 
chosen as the best target for the FZD3 receptor on the 

Fig. 2  The protein–protein interaction network. The network depicts interactions among the top up-regulated DEGs, excluding disconnected 
nodes in the network. (Color nodes—query proteins or the first shell of interactors, white nodes—second shell of interactors, filled nodes—proteins 
with known or predicted 3D structures, empty nodes—proteins with unknown 3D structures)
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Fig. 3  The Wnt signaling pathway. Canonical Wnt pathways are depicted in A, while non-canonical Wnt pathways are depicted in B 

Fig. 4  Expression levels of FZD3 receptor in different cancer types. Colorectal cancer is one of such cancer types in which the expression of FZD3 
in normal is more than doubled in tumor tissues
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grounds that recent research has indicated hsa-miR-
31-5p having oncogenic properties in CRC [36]. Finally, 
TargetScan analysis revealed that hsa-miR-98-5p binds 
three different positions on FZD3 mRNA: 1873, 3523, 
and 4957 (Fig. 7).

Discussion
Colorectal cancer incidences and mortality rates have 
decreased since the mid-1980s, but this malignancy 
accounted for more than 1.5 million new cases world-
wide and nearly 1 million cancer-related deaths in 2020. 
Despite the fact that CRC burdens vary across coun-
tries, increasing incidences are reported in countries 
with high Human Development Indexes. In addition, 
CRC continues to be a big problem in developing coun-
tries whose health care systems are still poor, and CRC 
treatments are still unaffordable. Therefore, it is impera-
tive that treatment approaches be improved to alleviate 
this deadly condition and improve survival rates. Routine 
CRC treatment strategies such as chemotherapy, immu-
notherapy, radiotherapy, and surgery have saved so many 
lives however, targeted therapy due to advancements in 

health science brings more specificity and increases sur-
vival among CRC patients.

Targeted therapy in CRC aims to block different criti-
cal pathways that are responsible for cell growth and pro-
liferation, angiogenesis, migration, differentiation, and 
anti-apoptosis by using small molecules such as mono-
clonal antibodies and miRNAs. These molecules pene-
trate cells and inhibit the target pathway, interfering with 
the growth of tumors and, in some cases, causing apop-
tosis [37]. Pathways that offer potential sites for targeted 
therapy in CRC include among others; Wnt/β-catenin, 
HGF/c-MET pathway, notch, hedgehog, and EGFR-
related pathways [37]. In spite of being referred to as 
non-coding RNA molecules, miRNAs have been shown 
by a number of studies to play an important role in regu-
lating 60% of human genes post-transcriptionally and in 
being associated with cancer [38]. Hence, we sought to 
inhibit FZD3, one of the frequently up-regulated frizzled 
receptors of the Wnt signaling pathway in CRC, by using 
miR-98-5p, a rarely reported miRNA in this disease.

FZD3 receptor expression was determined using differ-
ential gene expression analysis on five datasets and found 

Fig. 5  The volcano plots show the differential expression of FZD3 across our 5 datasets combined with the GEDS dataset. FZD3 was shown to be 
upregulated together with other genes in normal colorectal cells compared to cancerous cells. Blue = downregulated, grey = normal regulation, 
brown = upregulated genes. (A GSE8671, B GSE25071, C GSE39582, D GSE41657, E GSE62321)
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that the change in levels of expression between tumor 
and normal samples was significant enough for it to be 
a DEG alongside other genes. Following an analysis of 
gene ontology enrichment, it was found that FZD3 was 
significantly enriched in the Wnt signaling pathway along 
with many other genes within the pathway, which corre-
lates with recent studies which implicate Wnt signaling 
in the development of CRC [9, 39, 40]. Further analysis 
of the GEDS web server datasets revealed that FZD3 

expression was higher in CRCs, which validated our find-
ings. Furthermore, we have constructed a PPI and found 
FZD3 receptor interacting with key WNT signaling path-
way genes, including DVL, WNT1, WNT5, LRP6, and 
VANGL2 that were also found to be upregulated in our 
study data. It was also found that sFPR1 (secreted frizzled 
receptor protein 1), a Wnt antagonist, was downregu-
lated in all the datasets, which was previously reported 
to be down-regulated by the up-regulation of FZD3 [41]. 

Fig. 6  Protein–protein interaction network of FZD3. FZD3 interacts with other Wnt signaling pathway genes in the network. The inhibition of this 
gene can affect the entire pathway, inhibiting colorectal cancer progression. (Color nodes—query proteins or the first shell of interactors, white 
nodes—second shell of interactors, filled nodes—proteins with known or predicted 3D structures, empty nodes—proteins with unknown 3D 
structures)

Fig. 7  FZD3 and miRNA binding. miR-98-5p is depicted as a putative inhibitor of FZD3 via its binding to the 3’-UTR of FZD3
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Finally, it has been reported in several studies that FZD3 
expression is correlated with Wnt target genes, Cyclin D1 
and c-My, which we also found to be true in our analysis 
[14]. Therefore, on the basis of these results and litera-
ture references, it seems reasonable to suggest that FZD3 
plays a crucial role in the Wnt pathway and that its inhi-
bition would inhibit the pathway (Fig. 8).

Recent studies have demonstrated that microRNA 
miR-98-5p inhibits tumor proliferation, migration and 
invasion by targeting the Wnt signaling pathway-related 
genes in various cancers including ovarian cancer [42], 
glioblastoma [43], gastric cancer [44] in non-small cell 
lung cancer [45], and pancreatic ductal adenocarcinoma 
[46]. The findings represent miR-98-5p as a potential 
target of FZD3, one of the major receptors of the Wnt 
pathway. Computational analysis showed that the FZD3 
mRNA contained the binding sites for miR-98-5p in its 
3′-UTR, which is a key feature in the miRNA post-trans-
lational gene regulation mechanism. However, miRNA 
prediction algorithms can barely confirm that miR-98-5p 
targets FZD3 directly in CRC samples. To validate the 
study results, luciferase reporter assays should be done 
to compare the behavior of a wild-type (WT) as well as 
the mutated (MUT) FZD3 in the 3’UTR binding site. 
The difference in fluorescence between FZD3-WT and 

FZD3-MUT will confirm that miR-98-5p is directly tar-
geting the FZD3 gene. FZD3 and miR-98-5p could be 
forming an axis that inhibits Wnt signaling and CRC in 
general; however, the involvement of other target genes 
in the process cannot be ruled out. It is important that 
all the predicted target genes by at least two miRNA 
prediction algorithms are enriched in Wnt pathways by 
gene ontology and KEGG in order to validate the mecha-
nism by which miR-98-5p inhibits Wnt signaling path-
ways. The mRNA expression levels of such genes can 
then be measured with miR-98-5p mimic and inhibitor, 
respectively.

Conclusion
In conclusion, this study demonstrated that FZD3 is 
upregulated in CRC along with other crucial genes of 
the Wnt signaling pathway. Moreover, this provides 
evidence that miR-98-5p may inhibit the expression 
of FZD3, which may lead to reduced proliferation and 
metastasis of colorectal cancer cells, and these findings 
can be used in the development of target-based thera-
pies for CRC patients. It is essential, however, that these 
findings be validated by basic research in the future to 
determine the mechanism by which miR-98-5p regu-
lates CRC cells, both in vivo and in vitro.

Fig. 8  Inhibition of CRC progression. The illustration depicts the putative progression of Wnt signaling pathway with/out miR-98-5p in CRC cells
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