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Abstract 

Background SARS‑CoV‑2 infection involves disturbing multiple molecular pathways related to immunity and cellular 
functions. PIM1 is a serine/threonine‑protein kinase found to be involved in the pathogenesis of several viral infec‑
tions. One PIM1 substrate, Myc, was reported to interact with TMPRSS2, which is crucial for SARS‑CoV‑2 cell entry. PIM1 
inhibitors were reported to have antiviral activity through multiple mechanisms related to immunity and proliferation. 
This study aimed to evaluate the antiviral activity of 2-pyridone PIM1 inhibitor against SARS‑CoV‑2 and its potential role 
in hindering the progression of COVID‑19. It also aimed to assess PIM1 inhibitor’s effect on the expression of several 
genes of Notch signaling and Wnt pathways. In vitro study was conducted on Vero‑E6 cells infected by SARS‑CoV‑2 
“NRC‑03‑nhCoV” virus. Protein–protein interaction of the study genes was assessed to evaluate their relation to cell 
proliferation and immunity. The effect of 2-pyridone PIM1 inhibitor treatment on viral load and mRNA expression of 
target genes was assessed at three time points.

Results Treatment with 2-pyridone PIM1 inhibitor showed potential antiviral activity against SARS‑CoV‑2  (IC50 of 
37.255 µg/ml), significantly lowering the viral load. Functional enrichments of the studied genes include negative 
regulation of growth rate, several biological processes involved in cell proliferation, and Interleukin‑4 production, with 
interleukin‑6 as a predicted functional partner. These results suggest an interplay between study genes with relation 
to cell proliferation and immunity. Following in vitro SARS‑CoV‑2 infection, Notch pathway genes, CTNNB1, SUMO1, 
and TDG, were found to be overexpressed compared to uninfected cells. Treatment with 2-pyridone PIM1 inhibitor sig‑
nificantly lowers the expression levels of study genes, restoring Notch1 and BCL9 to the control level while decreasing 
Notch2 and CTNNB1 below control levels.

Conclusion 2-pyridone PIM1 inhibitor could hinder cellular entry of SARS‑CoV‑2 and modulate several pathways impli‑
cated in immunity, suggesting a potential benefit in the development of anti‑SARS‑CoV‑2 therapeutic approach.
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Background
Coronavirus disease 2019 (COVID-19) is an emerging 
disease with significant morbidities and mortalities, 
caused by SARS-CoV-2 virus [1]. COVID-19 patients 
showed acute and long-term complications that could 
progress to serious illness especially in aged and immu-
nocompromised patients [2].

SARS-CoV-2 entry routes were found to be through 
interaction of its spike protein (S-protein) with angi-
otensin-converting enzyme 2 (ACE2) receptors on 
cell membrane/transmembrane protease, Serine 2 
(TMPRSS2). TMPRSS2 is responsible for proteolytic 
cleavage and activation of the S-protein of SARS-
CoV-2, leading to fusion of the viral particles with cell 
membrane and viral entry [3]. Endosomal pathway is 
another route of SARS-CoV-2 entry via Cathepsin B, 
which is an endosomal cysteine protease. Cathepsin B 
releases the virus in cytoplasm through a mechanism 
similar to that of TMPRSS2 [3], although it works inde-
pendently from TMPRSS2 [4]. Drugs targeting these 
routs could hinder viral entry and decrease viral load in 
infected cells.

Serine/threonine-protein kinase PIM-1 (PIM1) is an 
active serine/threonine kinase which plays a crucial 
role in cell survival via hindering apoptosis, among sev-
eral biological processes [5]. PIM1 was also reported to 
be involved in host response to many viral infections, 
such as hepatitis B, Epstein-Barr, and human papilloma 
viral infections. Recently, it has been found that EV-A71 
infection elevated both the mRNA and protein levels of 
PIM1. The elevated PIM promoted EV-A71 replication 
through enhancing IRES activity and blocking AUF1 
cytosol translocation counteracting its antiviral prop-
erty [6]. In addition, PIM1 was reported to promote 
Zika virus replication by suppressing host cells’ natural 
immunity through downregulating phosphorylation of 
both STAT1 and STAT2 which are essential for cellular 
antiviral response [7]. Hence, targeting PIM1 using PIM1 
inhibitors could be effective in combating virus infection. 
The implication of PIM1 in immunosuppression dur-
ing chronic viral infections was also reported. PIM1 was 
found to be highly expressed in suppressive neutrophils 
and had a crucial role in maintaining their survival and 
function. Thus, PIM1 inhibition mitigated suppressive 
neutrophils-mediated immunosuppression, with conse-
quent increased CD8 T-cell function and improved viral 
control [8].

Previous studies had highlighted the interplay between 
PIM1 and Myc, which is a transcription factor known to 
be a PIM1 substrate [9]. Several studies had pointed out 
some interaction between Myc and TMPRSS2 [10, 11]. 
However, on a mechanistic level, the interaction of PIM1 
and its substrate, Myc, with TMPRSS2 is not clear yet.

Notch signaling has been reported to facilitate the 
infectivity of many viruses including Epstein-Barr virus, 
the human papillomavirus (HPV), hepatitis B virus 
(HBV), and hepatitis C virus (HCV). In SARS-CoV-2, 
it was found that Notch1 can indirectly enhance viral 
entry through inducing FURIN expression, the protease 
responsible for exposing the fusion sequences of the viral 
S-protein, facilitating viral particle fusion with cell mem-
brane [12]. Furthermore, the implication of the Notch 
pathway and downstream genes in many COVID-19 
events as cytokines storm, hypoxic response, and coagu-
lopathic response has been reported [13].

The interaction between PIM kinases and Notch 
signaling pathways has been studied. It was reported 
that PIM kinases induced Notch1 activity via phos-
phorylation, promoting its signaling along with other 
signaling pathways such as the Wnt pathway [14]. 
PIM1 inhibitors could modulate molecular func-
tions of PIM1. One of them is a 2-pyridone compound 
(6-amino-4-(3,4-dimethoxyphenyl)-1-(2-ethylphenyl)-
2-oxo-1,2-dihydropyridine-3,5-dicarbonitrile), named 
2-pyridone PIM1 inhibitor hereafter, had shown signifi-
cant PIM1 inhibition with minor toxicity risk in  vitro 
[15].

This study aimed to evaluate the antiviral activity of 
2-pyridone PIM1 inhibitor against SARS-CoV-2 and its 
potential role in hindering the progression of COVID-
19. It also aims to assess PIM1 inhibitor’s effect on Notch 
signaling pathway, Wnt pathway, and some key genes 
involved in SARS-CoV-2 pathogenesis.

Methods
2‑Pyridone PIM1 inhibitor synthesis and preparation
It is described previously [15].

Cytotoxicity and antiviral activity
Vero-E6 cells were sustained in DMEM (Dulbecco’s 
Modified Eagle’s Medium) containing 1% penicillin/
streptomycin mixture and 10% fetal bovine serum (FBS) 
in a humidified incubator at 37  °C and 5%  CO2. SARS-
CoV-2 (NRC-03-nhCoV) virus [16] was propagated and 
titrated as described previously [17].

Cytotoxicity (CC50) assay
Half-maximal cytotoxic concentration  (CC50) of 2-pyri-
done PIM1 inhibitor was assessed in VERO-E6 cells using 
crystal violet as described previously [18]. Briefly, cells 
were seeded in 96-well plates as 100 µL/well with a den-
sity of 3 ×  105 cells/ml. Plates were incubated for 24 h in 
a 5%  CO2 humidified incubator at 37 °C. After the incu-
bation period, cells were treated with various concen-
trations of the compound in triplicates. After 72  h, the 
supernatant was discarded, and cell monolayers were 
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fixed (using 10% formaldehyde for 1 h at room temper-
ature), dried, and stained with crystal violet on a bench 
rocker (50 µl of 0.1% solution, for 20 min at room tem-
perature). After washing and drying the stained cell 
monolayers, methanol (200 µl/well for 20 min) was used 
to dissolve the crystal violet on a bench rocker at room 
temperature. Crystal violet solution absorbance was 
measured at λmax 570 nm using a plate reader. The  CC50 
of 2-pyridone PIM1 inhibitor was calculated as the con-
centration required to induce cytotoxicity by 50% in the 
treated cells relative to the virus control.

Inhibitory concentration 50  (IC50) determination
The  IC50 value for 2-pyridone PIM1 inhibitor was deter-
mined as described previously [17], with slight modi-
fications. Briefly, VERO-E6 cells were seeded in tissue 
culture plates (2.4 ×  104/well) and incubated overnight in 
a humidified incubator at 37 °C, 5%  CO2. The cell mon-
olayers were then washed using 1 × PBS. An aliquot of 
the SARS-CoV-2 virus containing 100  TCID50 was incu-
bated with serial dilutions of 2-pyridone PIM1 inhibitor 
and kept at 37 °C for 1 h. The VERO-E6 cells were treated 
with the virus alone or virus/2-pyridone PIM1 inhibitor 
and incubated at 37 °C in a total volume of 200 µl per well 
along with uninfected untreated cells as a control and 
untreated infected cells as a virus control. After incuba-
tion in a 5%  CO2 incubator for 72 h at 37 °C, cells were 
fixed using 10% paraformaldehyde for 20 min and stained 
with 0.5% crystal violet in  dH2O for 15 min at room tem-
perature. Absolute methanol (100  μl/well) was used to 
dissolve crystal violet. Crystal violet solution absorbance 
was measured at λmax 570 nm using a plate reader. The 
 IC50 of the compound is the concentration required to 
reduce the virus-induced cytopathic effect (CPE) by 50%, 
relative to the virus control.

Protein–protein interaction prediction
GeneMANIA prediction tool [19] and STRING [20] were 
used to predict the interaction between the study genes 
and to evaluate the protein–protein interaction (PPI) 
enrichment. VirusMINT (http:// mint. bio. uniro ma2. it/ 
virus mint/ RRID: SCR_ 005987) was used for multivari-
ate interaction between host and viral proteins. Gene list 
input in STRING and VirusMINT was PIM1, Notch1, 
Notch2, CTNNB1, CDC42, PSEN1, BCL9, ACTR2, 
TDG, SUMO1, CDC34, and IL-6. p-value < 0.05 and false 
discovery rate (FDR) < 0.05 were considered significant.

Gene expression assay
Cell treatment
Five-hundred TCID50 of SARS-CoV-2 were used to 
infect VERO E6 cells. Cells with and without treat-
ment with 2-pyridone PIM1 inhibitor were collected in 

1 × PBS pellets by centrifugation at time intervals of 6, 
12, and 24 h post-infection. Control cells are uninfected 
untreated cells.

qPCR
Total RNA was extracted from treated and untreated cells 
(at three time points: 6, 12, and 24 h post-infection) using 
RNeasy Mini Kit, following the manufacturer’s instruc-
tions. The extracted mRNA was reverse-transcribed 
into cDNA using RevertAid First-Strand cDNA Synthe-
sis Kit (Thermo Scientific USA). Primers were designed 
for relative quantification of the study genes (Notch1, 
2, CTNNB1, PSEN1, CDC42, BCL9, ACTR2, SUMO1, 
and TDG), using Primer3 software (https:// prime r3. ut. 
ee/, RRID:SCR_003139). SYBR Green qPCR Master Mix 
(Thermo Scientific, USA) was used to prepare the reac-
tion mixture with GAPDH as a housekeeping gene. Tech-
nical replicates were prepared for the three time point 
samples (6, 12, and 24  h post-infection). Results were 
expressed using the  2−ΔΔCt method. Primers and anneal-
ing temperature Ta for each are listed in  Table 1. qPCR 
cycling conditions were 95 °C for 10 min followed by 40 
cycles (95 °C for 15 s, Ta for 30 s, and 72 °C for 40 s).

Statistical analysis
Two-tailed independent Student’s t-test for paramet-
ric data was used to assess the significant differences 
between the values of the control and treatment groups 
where p-value < 0.05 was considered significant. Experi-
ments and assays were performed in biological and tech-
nical replicates.

Results
Antiviral activity
The  CC50 of 2-pyridone PIM1 inhibitor was 1734  µg/ml 
that showed a potential antiviral activity against SARS-
CoV-2 with an  IC50 of 37.255 µg/ml (Fig. 1). SARS-CoV-2 
viral load in VERO-E6 cells treated with 2-pyridone PIM1 
inhibitor was found to be considerably low compared to 
non-treated SARS-CoV-2-infected VERO-E6 cells.

Protein–protein interaction prediction
Types of interactions between studied genes are dis-
played in Fig. 2A, showing physical interaction (47.15%) 
between the study genes and several genes involved in 
immunity including IL-6 and multiple pathway interac-
tions. PIM1 was shown to have a significant genetic inter-
action with BCL9 (p-value: 0.0004), ACTR2 (p-value: 
0.0007), and CDC42 effector protein (p-value: 0.0006) 
along with co-expression with PSEN1 (p-value: 0.0153) 
and TDG (p-value: 0.016) (supplementary file 1).

http://mint.bio.uniroma2.it/virusmint/RRID:SCR_005987
http://mint.bio.uniroma2.it/virusmint/RRID:SCR_005987
https://primer3.ut.ee/
https://primer3.ut.ee/
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Functional enrichments of the studied genes (network 
PPI enrichment p-value: 0.00134, Fig.  2B) include the 
following:

1. Negative regulation of growth rate (GO: 0,045,967/
FDR 0.00091)

2. Several biological processes involved in cardioblast 
proliferation and heart development (GO: 0,003,264/
FDR 0.00016, GO: 0,003,266/FDR0.0027, GO: 
0,003,161/FDR 0.0041, GO: 0,061,311/FDR 0.00043, 
and GO: 0,061,314/FDR 0.0009)

3. Positive regulation of neuroblast, astrocytes, and glial 
cells proliferation (GO: 0,002,052/FDR 0.0084, GO: 
0,048,710/FDR 0.0104, GO: 0,060,251/FDR0.0119)

4. Interleukin-4 production (GO:0,032,633/FDR 0.0027)

Protein network of the study genes showed that the 
predicted functional partners are interleukin-6; (IL-
6) and ubiquitin-conjugating enzyme E2 R1 (CDC34) 
(Fig. 2B, Supplementary file 2).

Multivariate interactions prediction of the study pro-
teins with viral proteins showed significant interaction 
between the studied protein list and SARS-CoV proteins 
(Fig. 2C).

Effect of SARS‑Cov‑2 and 2‑pyridone PIM1 inhibitor 
on some Notch signaling and Notch downstream genes
SARS-CoV-2 infection resulted in a significant over-
expression of Notch1, Notch2, CTNNB1, CDC42, and 
PSEN1 after 24  h of infection. No significant change 
in expression levels of all genes was observed at time 
points 6 and 12  h post-infection, compared to control. 
Treatment with 2-pyridone PIM1 inhibitor was able to 
significantly downregulate Notch1, Notch2, CTNNB1, 
and CDC42 in SARS-CoV-2-infected cells at 24  h post-
infection (p-value < 0.001). The expression of Notch1 

was normalized, while the expression levels of Notch2 
and CTNNB1 were below those of the control cells. 
The expression levels of CDC42, although significantly 
decreased, remained above those of the control cells. On 
the other hand, the change in PSEN1 expression levels 
was insignificant after 2-pyridone PIM1 inhibitor treat-
ment compared to untreated infected cells (Fig. 3).

The expression levels of BCL9 and ACTR2, which 
are Notch-signaling downstream genes, were assessed. 
SARS-CoV-2 infection caused overexpression of BCL9 
and underexpression of ACTR2 after 24 h of infection of 
the cells. 2-pyridone PIM1 inhibitor-treated cells showed 
significantly lower levels of both genes (p-value < 0.0001). 
BCL9 levels were restored to levels close to those 
observed in control cells, while ACTR2 levels were 
lower in treated cells compared to both control cells and 
infected untreated cells (Fig. 3).

Effect of SARS‑CoV‑2 and 2‑pyridone PIM1 inhibitor 
on TDG and SUMO 1
SARS-CoV-2 infection resulted in a significant overex-
pression of SUMO1 and TDG after 24 h but insignificant 
compared to control cells at 6  h post-infection. At the 
12-h time point post-infection, TDG expression showed 
significant overexpression compared to control cells, 
while SUMO1 remained unchanged.

Treatment of SARS-CoV-2-infected cells with 2-pyri-
done PIM1 inhibitor caused significant downregulation 
of TDG and SUMO1 expressions below expression levels 
in control cells (p-value < 0.0001) compared to untreated 
SARS-CoV-2-infected cells (Fig. 4).

Discussion
The development of specific antiviral agents for SARS-
CoV-2 is still a major concern of many studies. Immu-
nomodulation, protease inhibition, and targeting the 

Fig. 1 Cytotoxicity and in vitro anti‑SARS‑CoV‑2 activity of A and B, respectively. A Cytotoxicity of 2‑pyridone in Vero E6 cells as measured by 
MTT assay. B Dose‑inhibition curves against SARS‑CoV‑2 “NRC‑03‑nhCoV” virus in Vero E6 cells. Cytotoxic concentration 50  (CC50) and inhibitory 
concentration 50  (IC50) values were calculated using nonlinear regression analysis of GraphPad Prism software (version 5.01) by plotting log inhibitor 
versus normalized response (variable slope)
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viral RNA-dependent RNA polymerase (RdRp) are 
potential targets for anti-coronavirus agents [21]. PPI 
functional enrichment prediction of the present study 
genes showed significant enrichment of genes related to 
immunity, such as interleukin-4 production, with IL-6 
and CDC34 as predicted functional partners. Notch1 
was previously reported to positively regulate IL-6 pro-
duction in macrophages, which in turn amplifies the 
Notch signaling leading to further production of IL-6 
— through positive feedback mechanism. Also, Notch 

signaling promotes the production of inflammatory 
Th1/Th17 cytokines in T-helper cells [12].

PPI functional enrichment prediction suggested a role 
of the study genes in growth and proliferation of different 
types of cells including cardiac and CNS cells. However, 
the role of these genes in cardiac and neuronal compli-
cations of COVID-19 and long COVID needs further 
investigations. Host–pathogen interaction analysis by 
VirusMINT database showed a significant interaction 
between coronaviruses and the current study genes. 

Fig. 2 Protein–protein interaction and functional prediction. A Protein–protein interaction network of PIM‑1 with the study genes, showing 
prominent physical interaction (dark pink lines), pathways (light blue lines), and co‑expression (violet lines). B Protein functional enrichment 
network of the study genes. C Significant interactions of the study genes with viral proteins, assessed through VirusMINT database
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Fig. 3 Expression of Notch signaling and downstream genes after 24 h of SARS‑CoV‑2 infection in vitro. Expression levels are shown relative to 
control, with and without 2-pyridone PIM1 inhibitor treatment

Fig. 4 Expression of TDG and SUMO1 after 24 h of SARS‑CoV‑2 infection in vitro. Expression levels are shown relative to control, with and without 
2-pyridone PIM1 inhibitor treatment
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These results suggest that the interplay between the study 
genes and SARS-CoV-2 might help in evaluating new 
treatment approaches Table 1.

PIM1 kinase was reported to be highly expressed in 
the bronchial epithelium. Inhibition of PIM1 kinase 
was shown to reduce viral replication and viral particles 
release in cultured PBECs through induction of apoptosis 
during viral infection [5]. The present study provided evi-
dence of the role of PIM1 inhibition in lowering the viral 
load. SARS-CoV-2- infected cells treated with 2-pyri-
done PIM1 inhibitor showed lower viral load compared 
to untreated infected cells, possibly through the effect of 
PIM1 inhibition on TMPRSS2 through the PIM1 kinase 
substrate, Myc. However, understanding the mechanism 
of this effect needs further investigation.

The initial viral load is not necessarily associated with 
the severity of symptoms or duration of disease [22]. 
Hence, hindering viral entry is not sufficient to prevent 
COVID-19 progression. Studying the effect of 2-pyri-
done PIM1 inhibitor on pathways implicated in immunity 
could provide a better idea about its therapeutic effect 
and mechanism of action.

To assess the effect of PIM1 inhibition on the molecular 
pathogenesis of SARS-CoV-2, expression of some Notch 
pathway genes, Wnt/β-catenin signaling pathway, TDG, 
and SUMOylation, was studied in the current study.

The significant overexpression of Notch1 induced by 
SARS-CoV-2 infection was normalized in cells treated 
with 2-pyridone PIM1 inhibitor. For Notch2, the sig-
nificant overexpression induced by SARS-CoV-2 infec-
tion was reduced in cells with 2-pyridone PIM1 inhibitor 
below the control levels.

Notch pathway has a crucial role in the activation and 
the differentiation of innate and adaptive immune cells 
[12].

In SARS-Cov2 infection, a previous study using a com-
putational model reported that the proteins interacting 

with SARS-CoV-2 RNA 5′-region were associated with 
Notch2 receptor signaling [23]. In addition, Notch signal-
ing indirectly promotes viral entry through Furin induc-
tion by Notch1 [12]. Furthermore, the involvement of 
Notch signaling in cytokines storm, coagulopathy, and 
hypoxic events accompanied SARS-CoV-2 infection has 
been reported [13].

Hence, the ability of 2-pyridone PIM1 inhibitor to nor-
malize the expression of Notch 1 and reduce the expres-
sion of Notch 2 below the control levels could provide a 
mechanism by which 2-pyridone PIM1 inhibitor could 
be effective in treatment of COVID-19. Previous studies 
reported that inhibition of Notch signaling pathway can 
hinder SARS-CoV-2 infection, decrease inflammatory 
responses, and help alveolar regeneration [24].

Another pathway implicated in host–pathogen interac-
tion is the Wnt/β-catenin signaling pathway. Several pre-
vious studies reported the crucial role of Wnt/β-catenin 
signaling pathway in many viral infections including 
Flavivirus [25], influenza virus [26], and herpes simplex 
virus 1 [27]. All those studies reported that the activation 
of Wnt/β-catenin signaling during viral infection disturbs 
cellular homeostasis and provides a pathogenic environ-
ment that induces viral replication. Also, they reported 
that inhibition of Wnt/β-catenin signaling repressed viral 
replication and had strong antiviral effect.

In the present study, CTNNB1 was overexpressed after 
SARS-CoV-2 infection, in agreement with previous stud-
ies [28, 29]. ِAfter 2-pyridone PIM1 inhibitor treatment, 
CTNNB1 expression was significantly decreased, even 
below its levels in control cells. The explanation and 
potential effects of this downregulation need further 
studies. During SARS-CoV-2 infection, Wnt/β-catenin 
pathway was reported to be upregulated in association 
with TGF-b and STAT pathway leading to stimulate 
immune signaling, increase inflammatory cytokines pro-
duction, and promote pulmonary fibrosis. Thus, 

Table 1 Primer sequences of target genes

Primer sequence (5′‑3′) Ta

Forward Reverse

Notch1 ATG TGT TCT CGG AGT GTG TATG AGG GAC CAA GAA CTT GTA TAACC 55 °C

Notch2 CAG GTG AAT TCC CGA CTC TTT ACC GAC AGA CAA ATC AGG TAAG 55 °C

CTNNB1 CTT CAC CTG ACA GAT CCA AGTC CCT TCC ATC CCT TCC TGT TTAG 55 °C

PSEN1 CGG GAT TCC CAT TCT GTA GTC CTG TCT GAG GCC ACG TAA AT 54 °C

CDC42 GAT GTA AGC AGG CAG AGG TAAG GGC ACA GGC ACA CAG AAT A 55 °C

BCL9 CTG GGA AAT GTA GAG TCA GGTG GCT CTG GAG GCA TGG TAT AAG 55 °C

ACTR2 CTC ACA GAA CCT CCT ATG AACC CTG CCT GGA TGG CTA CAT ATAC 55 °C

SUMO1 CCC TTC ATA TTA CCC TCT CCTTT CAC TTG CAT TGG TCG ATC TTATT 54 °C

TDG AGC CAC GAA TAG CAG TGT TTA CTG AAG CCC AAA TTC CAA GTTC 55 °C
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Wnt/β-catenin signaling inhibition could negatively 
modulate SARS-CoV-2 infection [28].

Being one of the Rho family GTPases, CDC42 plays a 
vital role in the regulation of actin cytoskeleton, vesicle 
trafficking, and cell–cell adhesion. Thus, several viruses 
including Ebola virus, respiratory syncytial virus, and 
coronavirus hijack CDC42 to facilitate viral cell entry and 
subsequent nuclear infiltration [30]. Also, Kolyvushko 
et  al. (2020) identified that the activation of CDC42 by 
EHV-1 is required for stabilization of tubulin to promote 
intracellular virus transport and cell-to-cell virus spread. 
They also found that the chemical inhibition of CDC42 
resulted in precluding virus trafficking to the nucleus 
of infected cells [31]. In the current study, CDC42 was 
upregulated in SARS-CoV-2-infected cells. Treatment 
with 2-pyridone PIM1 inhibitor was able to downregulate 
its level, yet it remained higher than the control levels. 
In line with our results, a previous study showed altera-
tion in expression of CDC42 in nasopharyngeal swabs 
of COVID‐19 compared with non‐COVID‐19 patients. 
Also, they found downregulation of CDC42 expression 
upon treatment of human lung carcinoma A549 cells 
with Rho GTPases inhibitor as atorvastatin [32]. The role 
of CDC42 in COVID-19 progression remains unclear. 
However, an in  vitro study performed on Vero E6 cells 
confirmed that SARS-CoV-2 depended on CDC42 as one 
of different signaling pathways involved in viral cell entry 
and cell–cell fusion mechanisms [33].

In the current study, Notch signaling downstream 
genes, BCL9 and ACTR2, were also assessed. SARS-
CoV-2 infection caused overexpression of BCL9 and 
underexpression of ACTR2 in infected cells after 24  h 
post-infection. Treatment with 2-pyridone PIM1 inhibi-
tor was able to restore BCL9 expression to a level near 
that of control cells, while the level of ACTR2 expression 
was lower in the treated cells than both in control cells 
and infected untreated cells. Previously, a strong inter-
action between BCL9 and the Wnt/β-catenin pathway 
was reported. BCL9 acts as a transcriptional coactivator 
of CTNNB1 protein via binding to its N-terminus [34]. 
Thus, BCL9 knockdown strongly inhibits the transcrip-
tional activity of CTNNB1 and also the expression of 
various downstream genes in the Wnt/β-catenin pathway 
[35].

ACTR2 gene codes for ARP2 protein which has a vital 
role in actin polymerization, cell shape, and motility. 
Also, ARP2 has a crucial role in RSV spread through for-
mation of filopodia [36]. Recently, it was suggested that 
ARP2 plays a role in host–pathogen interaction in SARS-
CoV-2 infection. Moreover, inhibition of viral RNA 
expression was reported upon pharmacological inhibi-
tion of ARP2/3 complex [37]. Collectively, the studied 
Notch pathway genes were increased with increased viral 

load after SARS-CoV-2 infection, with the exception of 
ACTR2 as discussed above. Treatment with 2-pyridone 
PIM1 inhibitor decreased the viral load and was able to 
significantly reverse the effect of SARS-CoV-2 infection 
on the Notch pathway genes. As detailed above, Notch 
pathway was previously shown to interact with many 
pathogens including SARS-CoV-2, modulating their 
infectivity and viral entry [13]. Hence, results of the cur-
rent study suggest that the 2-pyridone PIM1 inhibitor 
could hinder SARS-CoV-2 infectivity via modulating its 
interaction with Notch pathway.

In the present study, SARS-CoV-2-infected cells 
showed a significant overexpression of SUMO1 and 
TDG. Treatment with 2-pyridone PIM1 inhibitor sig-
nificantly downregulated both genes to levels even below 
their levels in control cells.

SUMOylation pathway was reported to have a potential 
role in regulating cell homeostasis during viral infection. 
Various viruses were found to be able to hijack host cells’ 
SUMO pathways to promote virus replication and patho-
genesis [38]. Also, SUMOylation was reported to play a 
vital role in regulating innate immunity through altering 
interferon production and inhibiting NF-κB transcription 
[39].

As the 2-pyridone PIM1 inhibitor significantly shifted 
SUMO1 levels below control levels, inhibition of SUMO1 
could be a part of the 2-pyridone PIM1 inhibitor anti-
viral activity. As reported by [38], alteration in expres-
sion of genes regulating SUMO pathways was found in 
COVID-19 patients, suggesting SUMO pathway as a tar-
get for anti-coronavirus therapy. In addition, the inter-
action between the N-protein of SARS-CoV and SUMO 
machinery was documented. Thus, the interaction 
between SARS-CoV-2 and SUMO is possible due to sig-
nificant similarity of the N-proteins among coronaviruses 
[40].

SUMOylation was reported to affect the substrate 
binding capacity and catalytic activity of TDG enzyme 
[41]. TDG was found to be upregulated in the current 
study in SARS-CoV-2-infected cells. 2-pyridone PIM1 
inhibitor decreased its levels below the control levels. The 
ability of SUMO1 to regulate TDG activity could explain 
the TDG overexpression after SARS-CoV-2 infection 
[42]. Another study revealed that human TDG could be 
manipulated by SARS-CoV2 during the genome organi-
zation leading to the appearance of mutated strains with 
subsequent increase in the viral transmission rate and 
pathogenicity [43].

Conclusion
Treatment with 2-pyridone PIM1 inhibitor could hin-
der SARS-CoV-2 cell entry and lower the viral load. In 
addition, 2-pyridone PIM1 inhibitor could significantly 
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lower the expression levels of Notch pathway genes, 
CTNNB1, SUMO1, and TDG, which were overex-
pressed by SARS-CoV-2 infection. Thus, 2-pyridone 
PIM1 inhibitor could affect SARS-CoV-2 pathogenesis 
through modulation of several pathways implicated in 
immunity, suggesting its potential use in the develop-
ment of anti-SARS-CoV-2 therapeutic approach.
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