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Abstract 

Background The root system is vital to plant growth and survival. Therefore, genetic improvement of the root system 
is beneficial for developing stress-tolerant and improved plant varieties. This requires the identification of proteins that 
significantly contribute to root development. Analyzing protein-protein interaction (PPI) networks is vastly beneficial 
in studying developmental phenotypes, such as root development, because a phenotype is an outcome of several 
interacting proteins. PPI networks can be analyzed to identify modules and get a global understanding of important 
proteins governing the phenotypes. PPI network analysis for root development in rice has not been performed before 
and has the potential to yield new findings to improve stress tolerance.

Results Here, the network module for root development was extracted from the global Oryza sativa PPI network 
retrieved from the STRING database. Novel protein candidates were predicted, and hub proteins and sub-modules 
were identified from the extracted module. The validation of the predictions yielded 75 novel candidate proteins, 6 
sub-modules, 20 intramodular hubs, and 2 intermodular hubs.

Conclusions These results show how the PPI network module is organized for root development and can be used 
for future wet-lab studies for producing improved rice varieties.

Keywords Root development, Network analysis, Protein-protein interactions, Hub proteins, Sub-modules, Rice (Oryza 
sativa)

Background
Oryza sativa has a very high demand as a staple food, 
and although much successful research has been carried 
out to improve the yield, it tends to decrease drastically 
in response to environmental stresses. Therefore, the 
improvement of O. sativa must continue, aiming at suffi-
cient supply for the increasing population, which requires 

producing improved O. sativa varieties with higher yields 
and a higher ability to withstand environmental stresses 
[1–3].

The root system is the main component that supplies 
water and nutrients to the plant and plays a major role 
in withstanding environmental stresses [4]. Therefore, it 
should have a high priority when improving plant vari-
eties. Root development is a complex biological process 
regulated by a collection of biological pathways, which 
are influenced by environmental and genetic factors [4]. 
This research is focused on investigating the genetic fac-
tors by identifying the functionally important proteins 
and their interactions responsible for root development 
in O. sativa using network analysis.
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Biological processes are regulated by a collection of pro-
teins and their interactions. These protein-protein interac-
tions (PPI) are represented as PPI networks [5, 6]. PPI data 
are generated using wet-lab and computational techniques 
and are stored in databases [7, 8], such as DIP, STRING, 
and BioGRID. Among these databases, the STRING data-
base is popular because of the higher abundance, coverage, 
and better quality control of PPI data [7, 9, 10]. STRING 
contains PPIs from both experimental computational 
methods and provides a combined quality score for each 
interaction by integrating the data from various resources 
such as literature and gene expression profiles [7, 10, 11]. 
Using this approach produces more accurate predictions 
compared to networks that solely rely on experimentally 
determined interactions, which are prone to high rates 
of false positives and false negatives in identifying inter-
actions [10, 12]. PPI networks contain modules, which 
are distinct collections of proteins usually specific for a 
particular function or a phenotype [5, 13]. Hence, PPI 
networks can be analyzed to identify modules, which 
represent underlying protein interactions that determine 
the molecular functions and phenotypes. Furthermore, 
PPI networks are used for predicting novel protein can-
didates for molecular functions and phenotypes based on 
their interactions with known neighbors [14, 15]. Though 
wet-lab methods are available for predicting new protein 
candidates, computational methods for protein function 
prediction are faster, more cost-effective, and less labori-
ous than wet-lab methods [16, 17]. Sequence similarity-
based methods are popular computational approaches, 
which have been proven to be effective for some protein 
molecular function prediction studies, but they are less 
efficient for phenotype studies [16, 18]. This is because 
proteins associated with one phenotype can include pro-
teins with highly diverse sequences, annotated with differ-
ent molecular functions [12, 15, 18]. Therefore, predicting 
proteins for phenotypes using PPI networks is more accu-
rate and comprehensive than sequence similarity-based 
methods [16, 18].

PPI network analysis can be used to identify the sub-
modules within a particular module of a phenotype, and 
analysis of these sub-modules allows one to identify the 
related biological pathways and important proteins, i.e., 
hub proteins, involved in those pathways [19, 20]. Identify-
ing the hub proteins of a module is an important advantage 
of performing network module analysis [15]. Hubs have a 
higher number of interactions compared to non-hubs [21]. 
There are two types of hubs: intramodular and intermodu-
lar hubs [22]. Intramodular hubs can be found with their 
partners within the functional modules, while intermodu-
lar hubs act between the modules and interconnect them 
[21–23]. Removal of a hub has a higher impact compared 

to non-hubs because it impacts several biological pathways 
in the network [22], which disrupts the resulting pheno-
type. Therefore, hub proteins are identified as important 
proteins that play a critical role in maintaining module 
organization and stability [24]. These are usually important 
drug targets in human-related studies [25] or genetic engi-
neering targets in crop improvement [26].

PPI networks allow the understanding of the global 
organization of PPIs, sub-modules, connectivity among 
those sub-modules, and the hub proteins [8, 27, 28]. The 
interpretation of these networks reveals the biological path-
ways associated with a particular phenotype. The efficiency 
of PPI network analysis has been proven in human disease 
research [8, 29, 30], but to our knowledge, this method has 
never been used on root development in O. sativa.

This study aimed to apply PPI network analysis tech-
niques used in other biological fields to analyze proteins 
involved in root development in O. sativa. This involved 
predicting potential novel candidates for root develop-
ment, visualizing and identifying sub-modules, and ana-
lyzing their biological pathways. Additionally, this study 
also aimed to identify potentially important hub proteins 
related to root development and characterize the key inter-
actions that are related to this function. The results shed 
light on how protein-protein interactions (PPIs) play a 
crucial role in root development, which can be useful for 
future studies aimed at improving root architecture and 
developing more stress-resistant varieties of O. sativa.

Methods
Data retrieval and preprocessing
The proteins already known to be involved in root 
development (seed proteins) were retrieved from the 
literature and the STRING database (version 11.0; July 
2019; https:// string- db. org/). The PPI network and 
supplementary data for O. sativa were downloaded 
from the STRING database (retrieved and downloaded 
on July 17, 2019).

To improve the reliability and the quality of the down-
loaded PPI network, it was filtered using the “combined 
score” according to a recommended cutoff mark of 400 
[10]. Duplicates of the same record were removed, and 
STRING identifiers (IDs) for proteins were converted to 
preferred protein names to facilitate further analysis.

Network‑based candidate gene prediction and root 
development protein module extraction
The Hishigaki method was selected for the candidate 
gene prediction [14], and the prediction score was calcu-
lated according to the equation below.

https://string-db.org/
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Here, f denotes the function of interest, and u denotes 
the protein of interest. The number of proteins with the 
function (f) in the n-neighborhood of u is given by nf(u), 
and ef denotes the expected frequency for the function 
calculated as follows:

The total number of proteins annotated to the function 
of interest (f) in the network is denoted by totf, and totn 
denotes the total number of proteins in the network; n(u) 
denotes the total number of proteins in the immediate 
neighborhood of the interested protein (u) [14].

Predicted scores were sorted to obtain the proteins 
with the highest predicted scores. The top 20, 50, 75, 
and 100 proteins were listed with seed proteins, and PPI 
modules for those lists were extracted from the preproc-
essed network and visualized using the Cytoscape soft-
ware (version 3.7.1) [31, 32]. The final cutoff used for the 
rest of the analysis was chosen to maximize the number 
of seed proteins that were captured by the algorithm as 
well as to minimize the number of possible false positives 
that may result from less stringent cutoffs.

Validation of the predictions
Computational validation of the predicted proteins was 
required to confirm the accuracy of the predictions. Vali-
dation was done using enrichment analysis and perform-
ing a literature search on the predicted proteins.

Enrichment analyses were performed using the DAVID 
(DAVID Bioinformatics Resources 6.8; https:// david. 
ncifc rf. gov/ home. jsp) web application. The functional 
annotation tool in DAVID was used, and the official gene 
symbol was selected as the identifier [33]. The biological 
process component of the Gene Ontology (GO-BP) and 
KEGG pathways, which had significant p-values (< 0.05), 
was selected for further analysis [33]. Literature searches 
were also used to further validate the predictions and the 
enriched biological pathways.

Identification and analysis of sub‑modules
Preliminary identification of sub-modules was done using 
MCODE (version 1.5.1) [34, 35] plug-in in Cytoscape 
software with the clustering parameters as follows: 
degree cutoff = 2, node score cutoff = 0.6, k-core = 2, and 
max. depth = 100, and further cluster expansions were 
done by observing the network module visualization.

Enrichment analysis and functional interpretation of 
sub-modules and hub proteins were performed using the 

prediction score =
nf (u) − ef

2

ef

ef =

totf × n(u)

totn

DAVID enrichment analysis tool (DAVID Bioinformatics 
Resources 6.8) and literature mining.

Identification and analysis of hub proteins
Intramodular hub proteins were selected according to the 
degree of each protein. The degree cutoff for hub selec-
tion was determined by analyzing the degree distribu-
tion and picking the top 10% of proteins with the highest 
degrees [21]. Furthermore, intermodular hubs were iden-
tified by analyzing the inter-modular connections which 
connect different sub-modules. Specifically, the proteins 
which connect at least 3 sub-modules were selected as 
intermodular hubs. Functional interpretations of hub 
proteins were performed by investigating the literature.

The methodology of this study is briefly illustrated in 
Fig. 1.

All required scripts were written in Python (version 
2.7) and deposited in a GitHub repository (https:// github. 
com/ Samad hi9/ PPIN- analy sis).

Results
Data retrieval and data preprocessing
Altogether, there were 51 seed proteins extracted from 
the literature and the STRING database (Supplementary 
Table S1). The O. sativa STRING PPI network contained 
25,106 proteins and 8,949,048 interactions. There were 
21,212 proteins and 1,608,106 interactions after filtering 
by > 400 combined score cutoff. The number of interac-
tions was reduced to 803,817 after removing duplicates.

Network‑based candidate protein prediction and root 
development network module extraction
The Hishigaki method was used for network-based can-
didate protein prediction, and after several trials and 
errors, the top 75 candidates were selected as the most 
suitable number of candidates for further analyses 
because it gave the best visualization of the root devel-
opment network module by connecting most of the sub-
modules. Moreover, a significant number of seed proteins 
were included in the extracted network module (Table 1).

As shown in Table 1, the top 20 and the top 50 candi-
dates had a lower number of seeds present compared to 
the top 75 and 100. The top 75 and 100 had better seed 
retention, and both retained the same number (45) of 
seed proteins. Furthermore, degree distribution plots 
for the modules with 75 and 100 candidates showed an 
overlap with insignificant fluctuations (Fig.  2). There-
fore, the top 75 proteins were selected as the cutoff, as 
the networks generated from the top 75 and 100 both 
retained the same overall structure (i.e., had the same 
degree distribution), and the top 75 network would con-
tain less false-positive results due to the lower number of 
predictions.

https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
https://github.com/Samadhi9/PPIN-analysis
https://github.com/Samadhi9/PPIN-analysis
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Fig. 1 PPI network-based candidate protein prediction and validation workflow

Table 1 The number of seed proteins that were present and absent in the root development network modules according to different 
thresholds of selecting protein candidates

Top 20 candidates Top 50 candidates Top 75 candidates Top 100 candidates

Present Absent Present Absent Present Absent Present Absent

No. of seeds 38 13 41 10 45 6 45 6

Fig. 2 Degree distribution comparison between modules containing top 75 and 100 predicted proteins
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Although selecting the top 100 candidates connects 
more proteins in the network module, visualization was 
not clear due to congestion, and it did not reveal novel 
information about new sub-modules (Supplementary 
Fig. 1). It was just an expansion of the existing sub-mod-
ules, which caused the integration of the 3rd and the 4th 
sub-modules shown in Fig. 3. Although the sub-modules 
3 and 4 are integrated as in Supplementary Fig. 1, accord-
ing to the enrichment analysis results, they are involved 
in different pathways: cytokinin-activated signaling path-
way and cell wall organization, respectively. Therefore, 
top 75 protein candidates were selected for further analy-
ses. Their prediction scores are given in Supplementary 
Table S2.

Root development network module visualization
Visualization of the root development PPI network mod-
ule with the top 75 predicted proteins is given in Fig. 3.

Altogether, there were 120 proteins including 75 pre-
dicted candidates and 45 seed proteins (Supplementary 
Table S2) (Fig. 3). However, 6 seed proteins (Supplemen-
tary Table S3) were not visualized in the network because 
3 of those were not included in the STRING raw dataset, 
and 3 of those were removed while data preprocessing 
(Supplementary Table S3).

Computational validation of the predictions
The enriched GO-BP terms resulting from the functional 
enrichment analysis of the predicted root development 
protein candidates are shown in Table 2. To validate their 
expression patterns, transcriptomic data was retrieved 
from the NCBI database from the project titled “Tran-
scriptome profiling of various organs at different devel-
opmental stages in rice” (BioProject ID: PRJNA243371). 
The root samples for the transcriptional profiling done in 
the abovementioned dataset were taken before and after 
flowering [36].

The GO term: auxin-activated signaling pathway 
(GO:0009734) is the most enriched term for the pre-
dicted protein list. Auxin is a growth coordinator hor-
mone that regulates where, when, how much, and 
what sort of growth should occur in a plant. Auxins are 
expressed in many parts of the root such as root tip, root 
cap, and root epidermis. Moreover, auxins can be seen in 
the primary root, lateral roots, and root hairs. They are 
essential for many development processes in the root 
such as fine-tuning the growth rates, gravitropic root 
growth, cell division, proliferation, differentiation, and 
elongation of the root [37, 38].

The biological process cytokinin-activated signaling 
pathway (GO:0009736) was also enriched according to 
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Table  2. Cytokinin plays several roles in root develop-
ment, including regulating the responses to the growth 
nutrients and the biotic and abiotic stresses. Further-
more, cytokinin regulates root differentiation, elonga-
tion, branching, and root architecture [38, 39]. Moreover, 
it inhibits lateral root initiation and primary root elon-
gation [39] while being essential for crown root devel-
opment in O. sativa [4]. According to the enrichment 
analysis results, predicted proteins HK4, HK6, and ORR5 
are in that pathway, and their network neighbors (CR4, 
Os11t0143300-02, Os04t0445300-01) may also have a 
role in root development.

Results of enrichment analysis provide strong evidence 
to conclude that several predicted proteins are involved 
in root development, and it is safe to speculate the pre-
dicted proteins as accurate predictions, which validates 
the prediction method.

Identification and functional analysis of sub‑modules
There were 6 identified sub-modules (Fig. 3) in the root 
development PPI network module. Enriched ontology 
terms were used to describe each sub-module. Proteins 
and enriched GO-BP terms for each sub-module are 
given below.

Sub‑module (1)
Tables  3 and 4 contain the proteins and the enriched 
GO-BPs for sub-module (1). According to the results 
of the enrichment analysis in Table  4, it can be specu-
lated that sub-module (1) is involved with the endo-
plasmic reticulum (ER) tubular network organization 
(GO:0071786). The ER tubular network is involved with 
root hair tip growth [40]. Though the hub protein RHD3 
was not annotated to the ER tubular network organiza-
tion (Table 4), it is involved with root hair tip growth by 
organizing the ER tubular network [40, 41]. Also, Arabi-
dopsis rhd3 mutant causes short and wavy root hairs [42]. 
Furthermore, HVA22d protein co-localizes with RHD3 
and involves with ER shaping [41], and several proteins of 
the HVA22 family (protein HVA22-like protein, HVA22-
like protein k, HVA22-like protein f, HVA22-like protein 
e, and HVA22-like protein a), which were predicted, can 
be seen under this sub-module. According to this infor-
mation, predicted HVA22 family proteins can be specu-
lated to be involved with root development in O. sativa.

Proteins Osj_34384, Os12t0604600-01, Os04t0672900-
01, and Osj_07614 were also recognized as hubs in this 
sub-module. Among these, proteins Os04t0672900-01 
and Osj_07614 were two predicted candidates which had 

Table 2 Enriched GO-BPs terms for predicted proteins that are related to root development and the pattern of expression of the 
corresponding genes in the root

Term identifier GO‑BP term P‑value Proteins Expression in root

GO:0009734 Auxin-activated signaling pathway 0.00018 Osj_019622 (auxin response factor 16) Broad expression before and after 
flowering

Os11t0515500-01 (transport inhibitor 
response 1-like protein Os11g0515500)

After and before flowering

Osj_14626 (transport inhibitor response 
1-like protein Os04g0395600)

Before and after flowering

ARF19 (auxin response factor 19-like) Before and after flowering

IAA30 (auxin-responsive protein IAA30-
like)

Before flowering

GO:0009736 Cytokinin-activated signaling pathway 0.00786 HK6 (probable histidine kinase 6) Ubiquitous expression in roots after 
flowering

HK4 (probable histidine kinase 4) Before and after flowering

ORR5 (two-component response regu-
lator ORR5-like)

-

Os11t0143300-02 (two-component 
response regulator ORR9)

Broad expression after flowering

GO:0071786 Endoplasmic reticulum tubular net-
work organization

0.00912 Os04t0672900-01 (uncharacterized 
protein At2g24330)

Broad expression before flowering

Osj_07614 (uncharacterized protein 
At2g24330)

Ubiquitous expression in roots before 
flowering

GO:0006817 Phosphate ion transport 0.04774 PT2 (inorganic phosphate transporter 
1–2)
PTH-2

Biased expression in roots before 
flowering

PT3 (probable inorganic phosphate 
transporter 1–3)
PHT1-3

Expressed at low levels in roots
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not been characterized. According to the results, they 
probably have important roles in root development.

Sub‑module (2)
Tables 5 and 6 contain the proteins and the enriched GO-
BPs for sub-module (2), respectively.

According to Table  6, the most enriched function for 
the sub-module (2) is the auxin-activated signaling path-
way (GO:0009734), and most of the other functions of 
sub-module (2) are also related to the phytohormone 
auxin. The auxin signaling pathway combines trans-
port inhibitor response 1 (TIR1), auxin response factors 
(ARFs), and auxin/indole acetic acid (AUX/IAA) tran-
scriptional repressors together [38]. According to the 
enrichment analysis results, hub proteins Osj_019622, 
Osj_14626, PIN1, PIN2, PIN3A, IAA13, and IAA30 and 
non-hub proteins Osj_28507, Os11t0515500-01, IAA14, 
ARF12, ARF19, and ARF25 in sub-module (2) participate 
in the auxin signaling pathway.

Auxin polar transport (GO:0009926) is another enriched 
function for the sub-module (2) which includes PIN2, 

PIN1, PIN3A, Osj_28507, and Os08t0564300-04 as anno-
tated proteins. The protein PIN2, a hub with the highest 
degree of 22, is a potential candidate gene for improving 
root system architecture in O. sativa [43, 44], and PIN1 
and PIN3A are also hubs, which are central to the stability 
of this sub-module. Auxin polar transport is regulated by 
the PIN-FORMED (PIN) efflux carriers. PIN polarity plays 
a crucial role in developing proper organs and prolifera-
tion in root proximal meristem [37, 38, 45]. For example, 
the intramodular hub protein PIN2 works for root devel-
opment by positioning and emerging root hairs [37], and 
according to Inahashi et al. [46], the OsPIN2 gene regulates 
the seminal root elongation and lateral root formation in 
O. sativa. Moreover, overexpression of the OsPIN2 signifi-
cantly decreases the number of adventitious roots and the 
total root length by 22–28% [43]. Furthermore, overex-
pression of the gene OsPIN3a has led to the development 
of longer roots and more adventitious roots [47], and Hang 
et  al. [47] suggest that crown root development is con-
trolled by auxin signaling through PIN proteins. Another 
member of this sub-module, the protein PIN1, is also a 

Table 3 NCBI gene descriptions, predicted status, and hub status of the 19 proteins in sub-module (1)

Name in network module Gene description Predicted status Hub/non‑hub

RHD3 ROOT HAIR DEFECTIVE 3 Seed Hub

Osj_34384 ROOT HAIR DEFECTIVE 3 Homolog 2 Seed Hub

Os12t0604600‑01 ROOT HAIR DEFECTIVE 3 Homolog 1 Seed Hub

Os04t0672900‑01 Uncharacterized protein At2g24330 Predicted Hub

Osj_07614 Uncharacterized protein At2g24330 Predicted Hub

Os08t0467500‑02 HVA22-like protein Predicted Non-hub

Os09t0450600‑00 HVA22-like protein Predicted Non-hub

Osj_24793 HVA22-like protein k Predicted Non-hub

Os01s0728150‑00 HVA22-like protein f Predicted Non-hub

Os11t0498600‑01 HVA22-like protein e Predicted Non-hub

P0425F05.2 HVA22-like protein a Predicted Non-hub

Os05t0146900‑00 Uncharacterized Predicted Non-hub

Osj_09048 Uncharacterized Predicted Non-hub

Osj_32478 Uncharacterized Predicted Non-hub

Os07t0632600‑01 Uncharacterized Predicted Non-hub

Os05t0145700‑01 Uncharacterized Predicted Non-hub

Os05t0146100‑01 Uncharacterized Predicted Non-hub

Os01t0844300‑01 Peptidyl-prolyl cis-trans isomerase FKBP20-1 Predicted Non-hub

Os01t0728200‑01 Discontinues Predicted Non-hub

Table 4 Significant enriched GO-BP terms from the enrichment analysis for sub-module (1)

Term identifier Term name Proteins P‑value

GO:0000028 Ribosomal small subunit assembly Osj_34384, RDH3
Os12t0604600-01

0.0001

GO:0071786 Endoplasmic reticulum tubular network organization Os04t0672900-01
Osj_07614

0.0018
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Table 5 NCBI gene descriptions, predicted status, and hub status of the 34 proteins in sub-module (2)

Name in network module Gene description Predicted status Hub/non‑hub

ARL1 LOB domain-containing protein 29 Seed Hub

PIN1 Auxin efflux carrier component 1 Seed Hub

PIN2 Probable auxin efflux carrier Component 2 Seed Hub

PIN3A Probable auxin efflux carrier Component 3a Seed Hub

IAA13 Auxin-responsive protein IAA13 Seed Hub

EL5.2 E3 ubiquitin-protein ligase EL5 Seed Non-hub

EL5.1 E3 ubiquitin-protein ligase EL5 Seed Non-hub

ARF25 Auxin response factor 25 Seed Non-hub

ARF12 Auxin response factor 12 Seed Non-hub

Osj_28507 Auxin transport protein BIG Seed Non-hub

CCC1 Cation-chloride cotransporter 1 Seed Non-hub

IAA14 Auxin-responsive protein IAA14 Seed Non-hub

GLR3.1 Glutamate receptor 3.1 Seed Non-hub

VLN2 New submission Seed Non-hub

Osj_019622 Auxin response factor 16 Predicted Hub

IAA30 Auxin-responsive protein IAA30 Predicted Hub

GNP4 Protein LAX PANICLE 2 Predicted Hub

LAX1 Transcription factor LAX PANICLE 1 Predicted Hub

Osj_14626 Transport inhibitor response 1-like protein Os04g0395600 Predicted Hub

HOX10 Homeobox-leucine zipper protein HOX10-like Predicted Non-hub

HOX9 Homeobox-leucine zipper protein HOX9 Predicted Non-hub

ARF19 Auxin response factor 19 Predicted Non-hub

Os02t0190300‑01 Putative multidrug resistance protein Predicted Non-hub

Os02t0235900‑01 Tetrahydrocannabinolic acid synthase Predicted Non-hub

Os03t0253200‑01 Serine/threonine-protein kinase WAG1 Predicted Non-hub

Os06t0610100‑00 Discontinued Predicted Non-hub

Os08t0423600‑00 Alpha carbonic anhydrase 7-like Predicted Non-hub

Os08t0424100‑00 Alpha carbonic anhydrase 7 Predicted Non-hub

Os08t0564300‑04 ABC transporter B family member 1 Predicted Non-hub

Os11t0515500‑01 Transport inhibitor response 1-like protein Os11g0515500 Predicted Non-hub

Osj_20964 Uncharacterized Predicted Non-hub

Osj_30022 Disease resistance protein RPM1 Predicted Non-hub

P0025H07.5 Alpha carbonic anhydrase 7 Predicted Non-hub

PDR16 ABC transporter G family Member 32-like Predicted Non-hub

Table 6 Selected enriched GO-BPs and KEGG pathways from the enrichment analysis for sub-module (2)

Term Identifier Term name Proteins P‑value

GO:0009734 Auxin-activated signaling pathway Osj_28507, Os11t0515500-01, Osj_019622, Osj_14626, PIN1, 
PIN2, PIN3A, IAA13, IAA30, IAA14, ARF12, ARF19, ARF25

1.914000E-19

GO:0009926 Auxin polar transport Osj_28507, Os08t0564300-04, PIN3A, PIN1, PIN2 3.187130E-07

GO:0006355 Regulation of transcription, DNA templated IAA14, ARF12, Osj_019622, LAX, ARF19, IAA13, HOX10, 
ARF25, IAA30, HOX9

0.00001

GO:0016567 Protein ubiquitination Os11t0515500-01, EL5.1, Osj_14626, EL5.2 0.0002

GO:000958 Positive gravitropism Os08t0423600-00, PIN2 0.0111

osa04075 (KEGG pathway) Plant hormone signal transduction IAA13, IAA14, IAA30 0.0194

GO:0006730 One-carbon metabolic process Os08t0424100-00, Os08t0423600-00 0.0373

GO:0048364 Root development EL5.1, EL5.2 0.0713
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hub protein, and overexpression of gene OsPIN1 increases 
the emergence of adventitious roots, the primary root 
length, and the number of lateral roots [45, 48].

The roots have the ability to change their growing ori-
entation in response to the changes in gravity [37, 44], 
and it is controlled by the asymmetric distribution of 
auxin at the root tip. PIN family, AUX1 (AUXIN-INSEN-
SITIVE1), and other members of the auxin transport 
pathway contribute to this auxin distribution [37, 44]. 
Deletion in the OsPIN2 gene has displayed gravitropic 
root growth phenotypes as shootward auxin distribution 
in the lower side of the root is largely repressed during a 
gravity stimulus by the mutation of OsPIN2 [43, 44]. This 
shows that PIN2 is also essential for root gravitropism. 
Moreover, the crown root growth angle is an impor-
tant component of the O. sativa roots, and the OsPIN2 
mutant, lra1, has displayed larger root angles [44]. This 
indicates that the protein PIN2 is important in regulat-
ing crown root growth angle. Furthermore, OsPIN3a 
has shown a notable upregulation in OsPIN2 mutant 
lra1 since OsPIN3a compensates for the loss of OsPIN2 
(agravitropic root phenotype) to some extent [44]. One 
of the enriched terms for the sub-module (2) is positive 
gravitropism (GO:0009958), and the seed protein PIN2 
and the predicted candidate Os08t0423600-00 have been 
annotated to that process. In conclusion, this evidence 
prove that the majority of the sub-module 2 proteins con-
tribute to root development via auxin regulation.

Sub‑module (3)
Tables  7 and 8 contain the proteins and the enriched 
GO-BPs for sub-module (3), respectively. According to 
Table  8, the top enriched GO-BP term for sub-module 

(3), cytokinin-activated signaling pathway (GO:0009736), 
is mediated by a two-component system, and the signal-
ing is transmitted by transcription activators and repres-
sors in a phosphorylation signal transduction system 
(GO:0000160) [49, 50]. The two-component system com-
prises three functional modules: sensory histidine kinase 
(HK), histidine phosphate transfer protein (HP), and 
response regulator (RR). Cytokinins are sensed by mem-
brane-located HK receptors that transmit signals via HPs 
to nuclear RRs that activate or repress transcription [51].

The phytohormone cytokinin is present in the O. sativa 
root [43] and participates in regulating root development 
and root architecture. This indicates the involvement of 
the cytokinin-activated signaling pathway in O. sativa 
root development and the involvement of sub-module 
(3) proteins in root development through the cytokinin-
activated signaling transduction pathway.

Sub‑module (4)
Tables  9 and 10 contain the proteins and the enriched 
GO-BPs in sub-module (4).

As given in Table  10, sub-module (4) has proteins 
that are associated with both plant cell wall organi-
zation (GO:0071555) and cellulose catabolic process 
(GO:0030245) pathways. The proteins GLU5, GLU3, and 
Os06t0697000-02 are involved with cell wall organiza-
tion, and GLU5 and GLU3 are involved with cellulose 
catabolic process. Cell walls are important in any form 
of plant development, and cellulose is the major com-
ponent of the plant cell wall. Cellulose biosynthesis and 
cell wall loosening enable turgor-driven cell expansion 
in growing plants, and it has been speculated that endo-
1,4-b-glucanases (EGases) play a central role in these 

Table 7 NCBI gene descriptions, predicted status, and hub status for the 14 proteins in sub-module (3)

Name in network module Gene description Predicted status Hub/non‑hub

RR1 Two-component response regulator ORR1 Seed Hub

RR2 Two-component response regulator ORR2 Seed Hub

CKX4 Cytokinin dehydrogenase 4 Seed Hub

RR3 Two-component response regulator ORR3 Seed Non-hub

RR6 Two-component response regulator ORR6 Seed Non-hub

CKI1 Casein kinase 1 seed Non-hub

WOX11 WUSCHEL-related homeobox 11 Seed Non-hub

CR4 Putative receptor protein kinase CRINKLY4 Predicted Non-hub

HK4 Probable histidine kinase 4 Predicted Non-hub

HK6 Probable histidine kinase 6 Predicted Non-hub

ORR5 Two-component response Regulator ORR6 Predicted Non-hub

Os11t0143300‑02 Two-component response regulator ORR9 Predicted Non-hub

Os04t0445300‑01 Uncharacterized Predicted Non-hub

Os07t0162600‑02 Probable carboxylesterase Predicted Non-hub
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complex activities [52]. GLU3 and GLU5 (GLUs) have 
been directly annotated to the hydrolysis of endo-1,4-b-
glucanases [53, 54]. GLUs play important roles in root 
development, and glu mutants have reduced root devel-
opment [54]. Furthermore, GLU5 is expressed in lateral 
root primordia during auxin-induced lateral root devel-
opment [53].

Phosphate ion transport (GO:0006817) in a plant is 
mediated by several transporter protein families such 
as the Pht1 family [55]. PT2 and PT3 belong to the pht1 
family and are predicted candidates in sub-module (4). 
Both root hair length and frequency increase in response 
to phosphate (Pi) starvation, and the gene expression of 
OsPT2 is increased during Pi starvation. Therefore, it is 
reasonable to speculate that PT2, which is a predicted 
candidate protein, probably has a direct association with 
Pi transport [55, 56].

FH1 is an intramodular hub in sub-module (4) and also 
an intermodular hub. FH1 has been directly annotated to 
root hair development [57, 58]. EXPA8 in sub-module 4 
(degree = 7) was not considered a hub according to the 
hub selection criteria of this study. However, it is a root-
specific expansin protein, and expansins are plant cell 
wall proteins that are involved in cell wall modifications 
[59, 60]. Overexpression of the OsEXPA8 gene has shown 

Table 8 Selected enriched GO-BPs and KEGG pathways of enrichment analysis for sub-module (3)

Term identifier Term name Protein P‑value

GO:0009736 Cytokinin-activated signaling pathway HK4, HK6, RR2, RR6, RR1, RR3, ORR5 1.166273E-12

GO:0000160 Phosphorylation signal transduction system RR2, RR6, RR1, RR3, ORR5 5.924492E-08

osa04075(KEGG pathway) Plant hormone signal transduction RR2, RR6, RR1, RR3, ORR5 0.00002

GO:0006355 Regulation of transcription, DNA templated RR2, RR6, RR1, RR3, ORR5, WOX11 0.00045

GO:0006468 Protein phosphorylation HK4, HK6, CR4 0.0163

Table 9 NCBI gene descriptions, predicted status, and hub status for the 18 proteins in sub-module (4)

Name in network module Gene description Predicted status Hub/non‑hub

FH1 Formin-like protein 1 Seed Hub

DRO1 Uncharacterized Seed Hub

GLU3 Endoglucanase 12 Seed Non-hub

GLU5 Endoglucanase 2 Seed Non-hub

ORC3 Origin of replication complex subunit 3 Seed Non-hub

EXPA8 Expansin-A8 Seed Non-hub

EXPA17 Expansin-A17-like Seed Non-hub

C68 Probable LRR receptor-like
Serine/threonine-protein kinase At5g45780

Predicted Non-hub

EXPA31 Expansin-A31 Predicted Non-hub

Os03t0303100‑01 Serine/arginine repetitive matrix protein 2 Predicted Non-hub

Os04t0101800‑01 Uncharacterized Predicted Non-hub

Os06t0697000‑02 Probable xyloglucan
Endotransglucosylase/hydrolase protein 25

Predicted Non-hub

Os11t0439600‑01 Probable apyrase 3 Predicted Non-hub

Os11t0672900‑01 Serine/arginine repetitive matrix protein 1 Predicted Non-hub

Osj_06916 Uncharacterized Predicted Non-hub

Osj_22409 COBRA-like protein 10 Predicted Non-hub

PT2 Inorganic phosphate transporter 1–2 Predicted Non-hub

PT3 Probable inorganic phosphate transporter 1–3 Predicted Non-hub

Table 10 Selected enriched GO-BPs of enrichment analysis for 
sub-module (4)

Term identifier Term name Proteins P‑value

GO:0071555 Cell wall organization GLU5, GLU3, 
Os06t0697000-
02

0.0091

GO:0006817 Phosphate ion transport PT2, PT3 0.0129

GO:0030245 Cellulose catabolic process GLU5, GLU3 0.0185
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improved root system architecture with longer primary 
roots and a higher number of lateral roots and root hairs 
[59, 60]. Moreover, repression of OsEXPA8 has reduced 
the cell size of the root vascular system and plant height 
[60]. This evidence proves that sub-module (4) is linked 
to root development via cell wall organization.

Proteins of other sub-modules are listed in Supplemen-
tary Table S4. They did not have any significant enriched 
GO-BP terms related to root development and need fur-
ther investigation to confirm their involvement in root 
development.

Identification and analysis of hub proteins
There are two types of hubs: intramodular and inter-
modular hubs [22]. Intramodular hubs are found within a 
functional module, while intermodular hubs act between 
the modules to interconnect them [21–23].

Intramodular hubs
For this study, the top 10% of proteins with the highest 
degrees were selected [61] as intramodular hubs, which 
corresponds to a degree cutoff of 8, resulting in 20 pro-
teins (Table 11).

Some of the hubs are from the seed proteins, and oth-
ers are predicted candidates for root development in 
O. sativa. The predicted hubs are important findings 
because their relevance in root development has not 
been revealed to date. They also confirm the accuracy 
and importance of the predictions. Among the predicted 
hubs, there were candidates annotated to the enriched 
GO-BP terms related to the root development in O. 
sativa, although they lack direct experimental evidence 
for root development. For example, Os04t0672900-01 
and Osj_07614 of sub-module (1) were annotated to 
GO:0071786: endoplasmic reticulum tubular network 
organization (Table 4), which is a GO-BP term associated 
with root development.

Moreover, transcription factors LAX1 (LAX PANI-
CLE 1) and GNP4 (LAX PANICLE 2) are predicted 
candidates, which were identified as hubs. In O. sativa, 
LAX1 and GNP4 are required for the formation of axil-
lary meristem throughout the plant’s lifespan [62, 63]. 
Also, LAX1 shows non-cell-autonomous action (mutant 
extends beyond the mutant cells); however, its molecular 
basis has not been revealed yet [62]. Although the func-
tions of lax genes in O. sativa panicle have been studied, 
their functions in the root are yet to be revealed. The 
above results provide evidence for their involvement in 
root development. Therefore, this study provides poten-
tial candidates for selecting important proteins for future 
O. sativa root development studies.

The seed protein OSEIL1 is an intramodular hub 
and is involved in root development in O. sativa. It is a 

transcription factor participating in the ethylene sign-
aling pathway, which promotes O. sativa root elonga-
tion [64]. Most importantly, OSEIL1 connects with 8 
predicted candidates and joins the sub-modules (4) and 
(6) together (Fig. 3). Therefore, according to our results, 
OSEIL1 is a critical protein for root development and a 
likely candidate for future genetic engineering studies.

Intermodular hubs
Intermodular hubs connect different sub-modules 
(Fig. 3) and are important in linking the different meta-
bolic/biological pathways. Two intermodular hubs were 
detected in this study (Table 12).

As shown in Table  12, the protein DRO1 (DEEPER 
ROOTING 1) in sub-module 4 works as an intermodu-
lar hub and connects sub-modules 2, 3, and 4. Therefore, 
disturbance to the DRO1 can potentially disrupt the inter-
connectivity of the pathways or the proper mechanism of 
those sub-modules. Analysis of DRO1 using iDNA-Prot 
(http:// www. jci- bioin fo. cn/ iDNA- Prot) [65], which is a 
web tool for identifying DNA binding domains in pro-
teins [65], revealed that it may be a DNA-binding protein. 
Highly expressed DRO1 gene is involved in the regulation 
of deep rooting by increasing root growth angle which 
promotes the root growth in a more downward direc-
tion [66]. Furthermore, DRO1 enhances nitrogen uptake 

Table 11 Details of intramodular hub proteins

Protein Degree Type 
(seed/
predicted)

PIN2 22 Seed

RHD3 19 Seed

Osj_34384 17 Seed

Os12T0604600‑01 17 Seed

LAX1 13 Predicted

GNP4 12 Predicted

Os04T0672900‑01 11 Predicted

Osj_07614 11 Predicted

Osj_019622 10 Predicted

ARL1 10 Seed

PIN1 10 Seed

PIN3A 9 Seed

IAA30 8 Predicted

Osj_14626 8 Predicted

FH1 8 Seed

IAA13 8 Seed

CKX4 8 Seed

RR2 8 Seed

RR1 8 Seed

OSEIL1 8 Seed

http://www.jci-bioinfo.cn/iDNA-Prot
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and cytokinin fluxes at late stages of development by deep 
rooting which resulted in a high yield in O. sativa. There-
fore, DRO1 can be used to develop O. sativa cultivars that 
have high yields under both drought and non-drought 
conditions by controlling the root system architecture [66, 
67]. As shown in this study, the intermodular hub DRO1 
plays a major role in interconnecting and potentially regu-
lating the 3 submodules of root development and can be a 
valuable candidate for further experimental studies.

The FH1 (formin-like protein 1), which is in the sub-
module (4), is an intramodular hub and a critical regula-
tor of the O. sativa root hair development. Osfh1 mutant 
exhibited growth defects on root hairs. These defects 
depend on the environmental conditions and were only 
exhibited when roots were submerged in a solution [57]. 
According to Huang et  al. [58], the external supplies of 
nutrients or hormones could not rescue the defective 
mutant. Therefore, FH1 is a crucial protein for the growth 
of O. sativa as rice is grown under water-logged condi-
tions in the field until the fruit ripening stage [57, 58]. FH1 
is also identified as an intermodular hub, and it connects 
sub-modules (1), (3), and (4) (Table  12, Fig.  3). Formins 
regulate the growth and elongation of the root hairs and 
cell wall loosening and synthesis, which are required for 
root hair development [57]. Furthermore, the sub-module 
(4) which is annotated to the cell wall organization and 
the sub-module (1) which is mainly recognized for root 
hair development are connected by FH1. Since it is con-
nected with 3 sub-modules, it could have more roles in 
different pathways which are not yet revealed.

Discussion
The large number of proteins interacting with each other 
during the development of various plant systems makes 
disentangling their roles using traditional experimental 
techniques a daunting task. Computational approaches 
are ideal here as they enable the aggregation of data to 
construct higher-level views of biological systems (such 
as PPI network graphs), which are much better at identi-
fying complex relationships between proteins.

During this study, we predicted 75 novel protein can-
didates associated with root development. Validation of 
these predictions and analysis of hubs and sub-modules 
justified that some predictions are annotated to biologi-
cal processes associated with root development, which 
confirmed the accuracy of the predictions. These predic-
tions are based on network-based candidate gene predic-
tion, which has been proven to be an accurate method 
[15]. We also predicted 20 intramodular hubs and 2 
intermodular hubs, which are important outcomes of 
this study. This enabled identifying the important module 
members central to the stability of the root development 
in O. sativa. These hub proteins are potential candidates 
for future genetic engineering experiments as their influ-
ence on root development is larger than other proteins 
because of their centralized nature. The association of 
several identified hub proteins, such as PIN2 and DRO1, 
with root development is already experimentally vali-
dated. However, there are predicted hub proteins, such 
as LAX1 and GNP4, which require further experimental 
investigation. Therefore, this study provides a plethora of 
protein candidates for future experiments.

Importantly, this study depicts the organization of PPI 
interactions underlying root development. We unrave-
led how proteins associated with root development are 
organized into 6 major sub-modules, mainly attributed 
to biological processes, such as ER tubular network 
organization, auxin regulation pathway, cytokinin sign-
aling pathway, and cell wall synthesis. The knowledge 
about molecular mechanisms and properties of a major-
ity of these module proteins are still incomplete; hence, 
this analysis provides clues to their collective role in 
regulating root development in O. sativa.

Conclusion
In this study, we analyzed the network structure of 
root development proteins, during which 75 new 
protein candidates, 6 sub-modules, 20 intramodular 
hubs, and 2 intermodular hubs were identified using a 

Table 12 Details of intermodular hub proteins

Intermodular hub Degree Type (seed/predicted) Connected proteins Sub‑
module 
(Fig. 3)

DRO1 (in 4th sub‑module) 4 Seed C68
Os04t0101800-01

4

ARL1 2

WOX11 3

FH1 (in 4th sub‑module) 8 Seed PT3, PT2, EXPA8, EXPA17, Osj_22409, 
Os11t0439600-01

4

RHD3 1

WOX11 3
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computational analysis. This opens up new directions 
for future wet lab and dry lab studies based on pre-
dicted candidates and hub proteins. To our knowledge, 
this is the first study that analyzes the PPI network 
module for root development in O. sativa. Therefore, 
these findings are the first to show the PPI interaction 
structure underlying root development, which depicts 
the importance and applicability of network analysis on 
other plant developmental phenotypes as well.
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