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Abstract 

Background Zinc oxide nanoparticles (ZnO NPs) can be considered as nanofertilizer providing zinc as an essential 
micronutrient for plant growth and production at specific safe dose, however, above this dose; ZnO NPs induce oxida‑
tive stress. The present research aimed to evaluate some physiological and molecular effects of ZnO NPs on Trigonella 
foenum-graecum (fenugreek) plant.

Results The ZnO NPs were applied at five different concentrations (10, 20, 30, 40, and 50 mg/l) via soaking fenugreek 
seeds for 24 h. Fenugreek seedlings were harvested after 14 days for biomass and biochemical analyses. The results 
revealed that increasing ZnO NPs concentration led to a significant increase in all measured parameters until peaked 
at 30 mg/l; after that, a decline trend was detected. However, malondialdehyde (MDA) increased significantly just at 
higher concentrations of ZnO NPs (40 and 50 mg/l). In addition, genetic variation measure using start codon targeted 
(SCoT) markers revealed that ZnO NP treatments exhibited limited genetic variation.

Conclusion Results showed that treatment with ZnO NPs at 30 mg/l can improve biomass, bioactive compounds, 
and antioxidant activity of fenugreek seedlings, besides being safe for DNA. So, this concentration could be a decent 
nanofertilizer for fenugreek plant.
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Background
Application of micronutrients in the form of nanoparti-
cles has attracted a lot of attention because of their dis-
tinctive characteristics and promising applications in 
many agricultural sectors [1]. Nanoparticle fertilization 
is an important method to release required nutrients in 
a controlled manner gradually, which is vital to alleviate 
the consequences of soil contamination generated by the 
excessive use of chemical fertilizers [2].

Zinc oxide (ZnO) is one of the most important nano-
particles due to its interesting and unique properties, 
biocompatibility, and low toxicity [3]. Many research 
articles studied the key role of ZnO NPs in crop growth 
and productivity, including nitrogen uptake, respira-
tion, and photosynthesis, in addition to the activation of 
other physiological processes such as enzyme activation, 
synthesis of protein, and metabolism of nucleic acid and 
carbohydrate [4–7]. Plant response to ZnO NPs is con-
trolled by many factors such as NPs concentration, size, 
exposure duration, and type of plant [8].

In contrast to the beneficial role of NPs in the afore-
mentioned biochemical processes, the most common 
negative effect of NP exposure is the development of 
a cascade of reactions causing plants’ oxidative stress. 
This is due to the synthesis of high levels of reactive oxy-
gen species (ROS) including superoxide anion  (O2

−), 
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hydrogen superoxide (OH·), peroxide oxygen  (H2O2), 
and singlet oxygen (“O2”). ROS induced-oxidative stress 
is triggered by activating various biochemical reactions in 
the plant such as lipid peroxidation (LPO) [9]. The main 
product of LPO is malondialdehyde (MDA) that results 
from the oxidation of unsaturated fatty acids on the cell 
membrane [10]. Moreover, NP-induced ROS may cause 
DNA damage via affecting cross-linking, DNA-strand 
breakage, and sugar or base adducts [11, 12].

Recently, many new promising marker techniques, 
such as targeted start codon (SCoT) polymorphism, have 
been used to evaluate the molecular changes in plants 
exposed to NPs. SCoT is reproducible marker that origi-
nates from the short-conserved region in plant genes sur-
rounding the initiation codon of ATG translation [13]. 
SCoT markers have been widely used for investigation of 
genetic diversity and structure, identification of cultivar, 
quantitative trait loci (QTL) mapping, and DNA finger-
printing in plants [14]. In addition, SCoT is preferable 
than RAPD, ISSR, and AFLP in being more stable, pro-
viding more repeatable and reliable bands and could be 
used well for genetic mapping in numerous plants and 
marker-assisted selection programs [15].

Fenugreek (Trigonella foenum-graecum) is herbaceous 
plant whose seeds and leaves are of widespread use in 
food preparations and traditional medicine [16]. It is a 
rich source of iron, zinc, calcium, carotene, vitamin C, 
and many vitamins [17]. In addition, extracts of the fenu-
greek seeds are characterized by high phenolic acids and 
flavonoid contents exhibiting antioxidant activity [18]. 
Moreover, fenugreek seeds contain vital bioactive ingre-
dients such as coumarin, folic acid, nicotinic acid, phytic 
acid, scopoletin, saponin, and trigonelline which have 
various therapeutic and medicinal properties [19].

This study aims to assess positive or negative influences 
of different concentrations of ZnO NPs on biomass, some 
biochemical and molecular characteristics of fenugreek 
plant.

Materials and methods
ZnO NPs characteristics
ZnO NPs were synthesized using the chemical bath dep-
osition (CBD) method as described by El-Shaer et al. [20]. 
The synthesis was performed using 0.25-M zinc nitrate 
hexahydrate and 2.13 M of potassium hydroxide as pre-
cursors in 20  ml of deionized water. Each solution was 
separately stirred for 10 min and then mixed and stirred 
again for 10  min. The final mixture was kept in the oil 
bath at 80  °C for 4  h. After that, the precipitated ZnO 
NPs were rinsed several times with deionized water and 
ethanol and then dried at 105 °C. Characterization of the 
synthesized ZnO nanostructures, using XRD (Shimadzu 
6000), UV–Vis spectrophotometer (JASCO V-630), 

and scanning electron microscope (JSM-651OLV) was 
reported in El-Shaer et  al. [20] and Gaafar et  al. [21]. 
Accordingly, the average size of the synthesized ZnO NPs 
was 20–45 nm.

Plant material and growth conditions
Seeds of fenugreek (Trigonella foenum-graecum L.) Giza 
30 were obtained from the Agriculture Research Cen-
tre (ARC), Ministry of Agriculture and Land Reclama-
tion, Egypt. Seeds were disinfected with 20% of Clorox 
for 10  min and rinsed thoroughly to remove the disin-
fectant and soaked in ZnO NP concentrations (10, 20, 
30, 40, and 50 mg/l) for 24 h. The same number of seeds 
(20 seeds per 9 cm Petri dishes) was soaked in the dark 
at 24–26  °C. Fenugreek seeds were then transferred in 
pots filled with clay and sand with ratio of 2:1. The con-
trolled sets were also carried out at the same time along 
with treated seeds. The experiment was conducted with 
three replicas, and each pot contained 20 plants. After 
14  days, the seedlings were harvested for the following 
growth parameters, biochemical and genetic analysis. 
The growth of control and treated fenugreek seedling was 
described using fresh and dry weights (g).

Determination of biochemical parameters
Total soluble carbohydrates
In this study, total carbohydrate content was determined 
by the phenol–sulfuric acid method [22]. The concentra-
tion of total soluble carbohydrates content was measured 
at 490 nm in spectrophotometer (V-1200). It was calcu-
lated as mg/g dry weight.

Total soluble protein
Total soluble protein content was determined in borate 
buffer extract according to the method described by 
Bradford [23] using spectrophotometer. The concentra-
tion of total soluble protein content was calculated as 
mg/g dry weight.

Total phenolic content
The total phenolic content of fenugreek was estimated 
quantitatively using the method described by Jindal and 
Singh [24]. One milliliter of the ethanolic extract was 
mixed with 0.1 ml of folin reagent and 1 ml of  Na2CO3 
(20%) and then completed up to a known volume (5 ml) 
with distilled water. Thereafter, the absorbance was 
measured with the UV spectrophotometer, at 650  nm 
after 30 min. A standard curve was performed by using 
different concentrations of gallic acid for the determina-
tion of the total phenolic content (mg/g d.wt).
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Total flavonoids content
Total flavonoids content was extracted by soaking 0.1 g 
of the dried plant in 10  ml of 95% ethanol in a water 
bath at 60  °C for 4  h. The clear supernatants were 
diluted to a known volume (10 ml). The method of alu-
minum chloride colorimetric was used for total flavo-
noids estimation [25]. The 0.5  mL of extract solution 
was mixed with1.5  ml of 95% ethanol, 0.1  ml of 10% 
aluminum chloride, 0.1  ml of 1-M potassium acetate, 
and 2.8  ml of distilled water. The mixture was incu-
bated at room temperature for 30 min followed by cal-
culation the absorbance of mixture at 415 nm using the 
UV spectrophotometer. The calibration curve was plot-
ted using quercetin as a flavonoids standard. The total 
flavonoids concentration was expressed as mg/g d.wt.

DPPH free radical scavenging assay
The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical 
scavenging assay of CNMs was performed according to 
Rikabad et al. [26]. The absorbance was read at 517 nm 
with the same spectrophotometer.

Glutathione analysis
The definition was based on the interaction of reduced 
glutathione (GSH) with DTNBA to form a yellow-
colored 2-nitro5-thiobenzoate anion. The increase in 
the concentration of the yellow anion during this reac-
tion was recorded spectrophotometrically at 412  nm 
[27]. The total glutathione content in the samples was 
measured (color reaction) due to forming a complex of 
5,5′-dithiobis-2-nitrobenzoic acid (DTNBA) and GSH. 
The concentration of GSH in test samples was calcu-
lated using standard curve.

Malondialdehyde (MDA) content
Malondialdehyde (MDA), which is a secondary end 
product of polyunsaturated fatty acid oxidation, was 
applied as an indicator of lipid peroxidation. MDA 
content was determined by the thiobarbituric acid 
(TBA) reaction as described by Heath and Packer [28]. 
The absorbance was measured at 532 nm and 600 nm; 
finally, MDA content was determined using an extinc-
tion coefficient of 1.55  m  M·cm−1 and expressed as 
(n.mol/g.f.wt).

Statistical analysis
The results were presented as mean of the repli-
cates ± standard error (SE). Differences between treat-
ments for the different measured variables were tested by 
one-way variance (ANOVA), followed by Student’s t-test, 

and Dunnett’s test with significant differences was found 
(P < 0.05) in JMP program (13.2.0).

SCoT‑PCR analysis
Genomic DNA was isolated from freshly leaves by 
DNeasy plant mini kit (bio basic). Moreover, using elec-
trophoresis in 1% agarose gel with ethidium bromide, a 
qualitative check for DNA samples was done. Ampli-
fication reactions for six primer of SCoT techniques 
(Table 1) were performed as described by Fathi et al. [29] 
and Xiong et al. [30], respectively, and were carried out 
in Techne TC-512 thermal cycler as follows: one cycle at 
94 °C for 4 min followed by 40 cycles of 1 min at 94 °C, 
1 min at annealing temperature 57 °C for 2 min at 72 °C, 
and followed by 72° C for 10 min; the reaction was finally 
stored at 4 °C.

Gel reading and analysis
Amplified products were loaded and separated on a 1.5% 
agarose gel with ethidium bromide and 100-bp to 3-kb 
ladder markers. The run was carried out for about 30 min 
at 100  V in mini submarine gel BioRad. DNA banding 
pattern photos were photographed using Bio-1D Gel 
Documentation system and were analyzed by GelAna-
lyzer3 software which scoring clear amplicons as present 
(1) or absent (0) for each primer and entered in the form 
of a binary data matrix. From this matrix, DNA profiles 
were performed for SCoT techniques according to Adhi-
kari et al. [31].

Results
Fresh and dry weights
The results revealed that treatment with ZnO NPs 
at 20 and 30  mg/l was the most effective, increas-
ing significantly both fresh weight (0.175 ± 0.002 
and 0.182 ± 0.006  g, respectively) and dry weight 
(0.0121 ± 0.0001 and 0.0124 ± 0.0001  g, respectively) of 

Table 1 The sequence of primer set used for SCoT analysis

No Primer Sequence

1 SCoT 1 F: 5′‑ACG ACA TGG‑3′
R: 5′‑CGA CCA CGC‑3′

2 SCoT 3 F: 5′‑ACG ACA TGG‑3′
R: 5′‑CGA CCC ACA‑3′

3 SCoT 4 F: 5′‑ACC ATG GCT‑3′
R: 5′‑ACC ACC GCA‑3′

4 SCoT 8 F: 5′‑ACA ATG GCT‑3′
R: 5′‑ACC ACT GAG‑3′

5 SCoT 12 F: 5′‑CAA CAA TGG‑3′
R: 5′‑CTA CCA CCG‑3′

6 SCoT 15 F: 5′‑CCA TGG CTA‑3′
R: 5′‑CCA CCG GCT‑3′
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fenugreek seedlings, compared to control. In contrast, 
The ZnO NPs at 50  mg/l non-significantly reduced dry 
weight to 0.0082 ± 0.0004  g with respect to the control 
0.0088 ± 0.0006 g (Figs. 1 and 2).

Total soluble carbohydrates and total soluble protein
The carbohydrates content significantly increased with 
increasing ZnO NPs concentration, until reached maxi-
mum at 30 mg/l ZnO NPs; after that, a decline trend was 
detected but still higher than the control (Fig. 2). Regard-
ing the total protein content, a similar increasing then 
declining trend was achieved with increasing ZnO NPs 
concentration, except at 50  mg/l that non-significantly 
decreased relative to the control. Treatment with 30 mg/l 
ZnO NPs was the most effective, and increased carbo-
hydrate and protein contents by 50.6 and 52.8%, respec-
tively, over the control (Fig. 2).

Total phenolic content and total flavonoids content
The same trend observed for total carbohydrate and 
protein was also detected for total phenolic and total 
flavonoids contents. They increased significantly, with 
respect to the control, with increasing ZnO NPs con-
centration, until peaked at 30 mg/l ZnO NPs, after that 
a decreased trend was detected but still significantly 
higher than the control. Also, treatment with ZnO 
NPs at 30  mg/l was still the most effective, increas-
ing phenolic to 148.79 ± 1.33  mg/g.d.wt and flavonoids 
to 7.48 ± 0.306  mg/g.d.wt compared to the control 
(30.95 ± 3.64, 1.43 ± 0.23 mg/g.d.wt, respectively) (Fig. 2).

DPPH radical antioxidant activity
The effect of different concentrations of ZnO NPs on 
DPPH radical antioxidant activity is shown in Fig. 3. Our 
results revealed that all ZnO NPs tested concentrations 
significantly increased DPPH radical antioxidant activ-
ity relative to the control, with nonsignificant difference 
between 10, 20, 40, and 50  mg/l ZnO NPs treatments. 
Treatment with ZnO NPs at 30 mg/l exhibited the high-
est DPPH activity increasing by 13.9% over the untreated 
control.

GSH content
As shown in Fig.  3, ZnO NPs treatments upregulated 
GSH level at all treated concentrations compared to the 
control. This increase started to be significant at 20 mg/l 
(155% increase than the control) and reached maximum 
at 30 mg/l which motivated the highest GSH level (190% 
increase than the control). The doses of 10 and 50 mg/l 
ZnO NPs non-significantly upregulated GSH content of 
fenugreek seedlings (65 and 55% increases over the con-
trol, respectively).

MDA content
In order to evaluate the membrane damage imposed by 
ZnO NPs, MDA content (Fig. 3) was measured to analyze 
lipid peroxidation. Only treatments at 40 and 50 mg/l of 
ZnO NPs significantly increased MDA content by 81.6 
and 79.7%, respectively, over the control, while no signifi-
cant increases in plants treated with 10, 20, or 30 mg/l of 
ZnO NPs when compared with the control.

Control 10 mg/l 20 mg/l 30 mg/l 40 mg/l 50 mg/l

Fig. 1 A 14‑day growth of fenugreek seedlings under different concentrations of ZnO NPs
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SCoT analysis
In SCoT analysis, a measure of genetic variation, six 
primers screened for amplification of all the treat-
ments and the control. All primers gave reproduc-
ible and scorable amplification product. Table  2 
showed codes of the six primers, total number of 
amplification fragments for control and ZnO NPs 
treatments, and the number of polymorphic frag-
ments for each primer. A total of 24 bands were 

obtained in which 7 were polymorphic and 17 were 
monomorphic with a polymorphism 29.16% across 
the six primers (Fig. 4).

In primer SCoT 3, a band at 500 bp was detected for 
all ZnO NPs treated plants in contrast to the control. 
Also, SCoT 4 revealed a band at 380 bp for all ZnO NPs 
treatments, but it was absent in the control.

In the case of SCoT 8, a band at 430 bp was observed 
in the control and all treatments except 30  mg/l ZnO 

Fig. 2 A Fresh weight, B dry weight, C total soluble carbohydrates, D total soluble protein and E total phenolic content, and F total flavonoids 
content of fenugreek seedling grown under different concentrations of ZnO NPs (10, 20, 30 40, and 50 mg/l). The data are means ± SE. Different 
small letters indicate statistically significant differences between different treatments according to the Dunnett’s test (P < 0.05)
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NPs, while primer SCoT12 detected one unique band at 
615 bp in 50 mg/l ZnO NPs treatment.

Discussion
Nanoparticles can be used as plant fertilizers to make 
nutrients bioavailability in a controlled manner so that 
they are only absorbed by the plant and are not lost to the 
surrounding environment including soil, water, and asso-
ciated microorganisms [32]. Zinc oxide nanofertilizers 
exhibited preferable and promising results in enhancing 
seed germination and promoting healthy seedlings [33].

Our findings showed that the soaking of fenugreek 
seeds in different ZnO NPs concentrations was consider-
ably effective and promoted the growth, and this was dose 
dependent. Both fresh and dry weights were increased 
in all plants treated with different ZnO NPs concentra-
tions, except at 50 mg/l which revealed a nonsignificant 
decrease in dry weight, compared to the control. This 
increase can be certified with the tendency of ZnO NPs 
to penetrate seed testa and improve the Zn use efficiency 
as an essential micronutrient leading to increase seedling 
growth [34, 35]. In agreement with our obtained results, 
Atteya et  al. [36] and Gheith et  al. [37] stated that zinc 

treatment promoted growth and yield parameters of 
jojoba and maize plants. They also observed the enhanc-
ing effect of nanoparticles for plant growth and yield in 
peanut at lower doses. In addition, Zn NPs were found 
to improve the length, leaf protein, and dry mass of Pearl 
Millet (Pennisetum americanum) plant [38, 39]. On the 
other hand, Liu et al. [40] stated that high concentrations 
of ZnO NPs can inhibit germination, biomass, and pho-
tosynthesis of plants. This may explain the decrease of 
dry weight at 50 mg/l Zno NPs.

The application of ZnO NPs significantly affected the 
assessed total proteins and total carbohydrate of fenugreek 
seedlings. The total soluble protein and carbohydrate con-
tents increased simultaneously with increasing the nano-
particle dose and reached the maximum at 30 mg/l while 
dropped slightly following treatment with 40 and 50 mg/l 
ZnO NP. These findings agree with Rao et  al. [41] and 
Zhao et  al. [42] who declared that nanofertilizers have a 
pronounced influence on carbohydrates biosynthesis in 
leaves and can modify protein content of plants. In addi-
tion, the ZnO NPs at lower concentrations increased the 
total soluble protein and carbohydrate contents in vari-
ous plant species such as cluster bean [11], green pea [43], 

Fig. 3 A GSH content, B DPPH radical antioxidant activity, and C MDA content under different concentrations of ZnO NPs (10, 20, 30 40, and 
50 mg/l). The data are means ± SE. Different small letters indicate statistically significant differences between different treatments according to the 
Dunnett’s test (P < 0.05)
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maize [44], and bell peppers [45]. These findings are com-
patible with the fact that zinc at definite concentrations is 
vital for structural and catalytic constituents of proteins 
and enzymes as cofactors which are essential for normal 
plant growth and development [46].

Exposure of fenugreek seeds to ZnO NPs at different 
concentrations affected positively on the seedling con-
tents of flavonoids and phenols, with a highest increase 
at 30  mg/l. Also, Uresti-Porras et  al. [45] found that 
bell peppers treated with ZnO NPs at concentrations of 
30 mg/l revealed a significant increase in total phenolic 
compounds over the control. In addition, Moham-
madghasemi et  al. [47] concluded that nanofertilizers 
improved total phenolic and total flavonoid contents 
in Lallemantia iberica when compared with the con-
trol. Moreover, Zn nanofertilizer was found to increase 
the polyphenols content in cotton and soybean crops 
[48, 49]. These improvements may be in line for the 

essential role of zinc in the carbon allocation to biosyn-
thesize phenolic compounds in shikimic acid and ace-
tate pathways [50].

The DPPH has been widely used to estimate the anti-
oxidant activity of plant extracts via testing the abil-
ity of compounds to scavenge free radical or donate 
hydrogen [51]. In the present study, all tested ZnO NP 
concentrations increased the yield of total DPPH over 
the untreated control plants. No significant differences 
were observed between 10, 20, 40, and 50  mg/l Zno 
NPs treatments, while 30  mg/l revealed the highest 
DPPH activity. This agrees with Salachna et al. [52] who 
found that exposure to ZnO NPs at low concentration 
improved the total polyphenols content, antioxidant  
activity, and DPPH activity with respective to the con-
trol in Perilla (Perilla frutescens (L.)) plant. In addition, 
Thapa et al. [53] stated that the total antioxidant activity  
(TAA), DPPH, and flavonoid contents increased in 

Table 2 SCoT analysis screened by six primers that demonstrated the effect of ZnO NPs on DNA pattern of fenugreek plant

Mo.wt ladder molecular weight, bp base pair, C control

Primer Total
band

Monomorphic
band

Polymorphic
band

Unique
band

Mo.wt
(bP)

ZnO NPs (mg/l)

C 10 20 30 40 50

540 1 0 1 1 1 1

400 1 1 1 1 1 1

SCoT 1 5 4 1 1 325 1 1 1 1 1 1

185 1 1 1 1 1 1

130 1 1 1 1 1 1

500 0 1 1 1 1 1

SCoT 3 3 2 1 1 320 1 1 1 1 1 1

245 1 1 1 1 1 1

640 0 0 1 0 1 0

580 1 1 1 1 1 1

SCoT 4 5 3 2 1 380 0 1 1 1 1 1

300 1 1 1 1 1 1

240 1 1 1 1 1 1

430 1 1 1 0 1 1

340 1 1 1 1 1 1

SCoT 8 4 3 1 1 275 1 1 1 1 1 1

220 1 1 1 1 1 1

615 0 0 0 0 0 1

485 1 1 0 1 1 1

SCoT 12 4 2 2 1 370 1 1 1 1 1 1

280 1 1 1 1 1 1

360 1 1 1 1 1 1

SCoT 15 3 3 ‑ ‑ 245 1 1 1 1 1 1

185 1 1 1 1 1 1

Total 24 17 7 5
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mung bean (Vigna radiata) plants treated with zinc 
sulfide nanoparticle. Moreover, Weisany et al. [48] con-
cluded that nanofertilizers improve the antioxidant 
capacity and DPPH scavenging in rice.

Glutathione content increased in all treatments of 
ZnO NPs and peaked at 30  mg/l compared with the 
control. This agrees with Riaz et al. [54] who found that 
SiNPs increased glutathione content in wheat. In addi-
tion, Jurkow et  al. [55] found that foliar application of 
Au-NPs and Pt-NPs on oakleaf lettuce seedlings leads 
to an increase in glutathione (GSH) content. Moreo-
ver, the genes involved in glutathione biosynthetic were 
upregulated in Arabidopsis thaliana plants treated with 
0.2–1 mg/l Ag-NPs [56].

Lipid peroxidation acts as a symptom of membrane 
degradation under stress conditions and is positively 
related with MDA content [57]. In this study, the con-
tent of MDA, as an oxidative stress index, in plants 
treated with 10, 20, or 30 mg/l of ZnO NPs did not sig-
nificantly differ from the control. However, the higher 

concentrations of ZnO NPs, 40 and 50  mg/l, signifi-
cantly increased MDA content. Also, Singh et  al. [58] 
stated that ZnO NPs at higher concentration provoked 
the ROS production causing oxidative damage that 
increases MDA content in chickpea plants. In spite of 
the vital role of zinc in protection and stabilization of 
the biological membranes against integrity loss and 
permeability alteration and oxidative stress, the higher 
doses of ZnO NPs may damage this membrane via 
enhancing ROS mechanism that produces oxidative 
stress [59].

SCoT markers were implemented to detect the 
genomic changes that occurred in the fenugreek seed-
ling upon exposure to different doses of ZnO NPs. The 
SCoT banding patterns pertaining to the impact of 
ZnO NPs show limited genetic variations between the 
ZnO NPs treatments and the control plants. A possi-
ble reason for these limited genomic changes in ZnO 
NPs-treated plants could be attributed to lower levels 
of ZnO NPs that had been tested.

Fig. 4 The SCoT marker created with various six primers (SCoT 1, SCoT 3, SCoT 4, SCoT 8, SCoT 12, SCoT15) to detect the impact of ZnO NPs in 
fenugreek seedlings. Lanes: M, DNA ladder; 1, control; and 2–6, ZnO NPs doses (10, 20, 30, 40, and 50 mg/l)
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Conclusion
Our results collectively reflect that soaking of fenugreek 
seeds in 30  mg/l ZnO NPs was found to be the most 
effective nanofertilizer between tested concentrations. 
The 30  mg/l ZnO NPs attained the highest values for 
plant biomass, flavonoid content, phenolic content, and 
antioxidant activity in fenugreek seedling, giving rise to 
a potential increase in the nutraceutical properties of 
fenugreek plant. SCoT markers revealed that treatment 
of fenugreek plant with ZnO NPs until 50 mg/l did not 
exhibit distinct DNA alterations.
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