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Abstract 

Background:  The Himalayas have always been an enigma and, being biodiversity hotspots, are considered extremely 
important from an ecological point of view. Recent advances in studies regarding high-altitude lakes have garnered 
relevant importance as these habitats could harbor potential psychrophilic and psychrotrophic microbes with bio-
prospective applications. Contemplating the above scenario, the present study has been undertaken to understand 
the diversity and the functional capacities of the microbes thriving in this lake.

Results:  In our present study on Samiti Lake, the abundance of Proteobacteria as the major phylum was seen in both 
the soil and water samples. Incase of the ABSLW (water) and ABS1 (soil) sample, 148,066 and 239,754 predicted genes, 
were taken for functional analysis.  The KEGG analysis showed that ABSLW and ABS1 had 122,911  and 160,268, genes 
assigned to KO terms respectively. Whereas in case of COG functional analysis, 104,334 and 130,191 genes were 
assigned to different COG classes for ABSLW and ABS1 respectively. Further, on studying the glycoside hydrolases, an 
abundance of GH13, GH2, GH3, GH43, and GH23 in both the soil and water samples were seen.

Conclusion:  Our study has provided a comprehensive report about the bacterial diversity and functional capacities 
of microbes thriving in Samiti Lake.  It has also thrown some light on the occurrence of glycoside hydrolases in this 
region, as they have numerous biotechnological applications in different sectors.

Keywords:  Diversity, Glycoside hydrolases, Samiti Lake, Himalayas, Psychrophilic, Psychrotrophic

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Background
Culture-independent approaches to studying microbial 
diversity in extreme environments have increased sig-
nificantly because of their bio prospective aspects [1, 2]. 
These unexplored extreme environments and their func-
tional diversity studies could facilitate various potential 
bio-prospective solutions to environmental concerns 
[2]. Recently, ecology and biodiversity relationships with 

bacterial communities via environmental sampling and 
the next-generation sequencing technologies have been 
at the forefront of research [3]. Since most microorgan-
isms are still difficult to cultivate hence,  culture-based 
methods have been found to be insufficient for determin-
ing the diversity of microbes [4]. Exploring the microbial 
diversity via metagenomics has been a boon to science 
as, it has promoted and enabled a better understand-
ing of the unexplored and extreme realm and diversi-
fied our knowledge about microbial adaptations and 
their interactions in unexplored areas [5, 6]. Numerous 
metagenomics studies have been carried out in aquatic 
environments [7, 8]. Diverse metagenomics studies on 
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the psychrophilic Pangong Lake [9], Upper Mississippi 
River (Minnesota) [10], and Amazon Basin freshwater 
lakes [11] have recently been reported. The metagenom-
ics methodology has thus paved the way through which 
novel gene sequences, and metabolic pathways of uncul-
turable microorganisms have been identified as has been 
elucidated by some recent works [12].

High-altitude lakes are exposed to extreme environ-
ments like low nutrient conditions, UV radiation, and low 
temperatures [13, 14]. Furthermore, these high-altitude 
lakes are harder to access than low-altitude lakes due 
to their distant location [15]. Additionally,  the moun-
tain ecosystems show altitudinal gradients and adverse 
environmental factors [16–18]. Reports suggest that 
although the diversity of flora and fauna shows an inverse 
relationship with increasing altitude, it   may not apply 
to microbes [19, 20]. The drastic seasonal shifts in the 
physiochemical properties of the soil, climatic changes 
in altitude gradient and fluctuating subzero temperatures 
are characteristics of the Himalayan range  [1, 21].  The 
Himalayas are biodiversity hotspots for different flora 
and fauna, ranging from orchids and rhododendrons to 
Himalayan tahr, Red panda, Himalayan Musk deer, Black 
Eagle, Tibetan Partridge [22, 23] etc. Likewise, this region 
may also hold a great promise of untapped potential for 
microbial diversity. Recent metagenomics research on 
Manikaran Hot Springs [24], frozen soil of the northwest-
ern Himalayas of Jammu and Kashmir [25], and high-ele-
vation Himalayan glacial lakes (Parvati kund) imply that 
these Himalayan regions are undergoing exploration [26]. 
Further, the Eastern Himalayas provide a plethora of high-
altitude lakes [27] and such regions could harbor numer-
ous psychrophilic and psychrotolerant microorganisms 
[28] that could be the source of numerous cold-adapted 
enzymes [29]. Psychrophilic enzymes have a wide range 
of documented uses, including stone washing [30], biore-
mediation, biotransformation, biomedical [31–33], and 
molecular biology applications [34, 35]. Reports of bio-
augmentation with psychrophiles have also been shown 
to improve the biodegradation of recalcitrant substrates 
[36]. One such enzyme, glycoside hydrolases (GH), has an 
increased potential for complex carbohydrate deconstruc-
tion [37]. Glycoside hydrolases like cold active cellulases 
[38], amylases [39, 40], and β-galactosidases [41, 42] have 
found to be advantageous in a variety of industries like 
that of detergents, cosmetics, food, textiles, and bakery 
[43].

Sikkim is a Himalayan state   situated in the north-
eastern part of the Indian  territory, close to the Eastern 
Himalayas [44]. Samiti Lake,  is a glacial lake in Sikkim 
that sits at an elevation of approximately 4200 to 4300 m 
(13,700 ft.) [45]. The high elevation of the lake and the 

cold temperatures prevailing in this region, are apt for the 
detection of diverse microflora   having metabolic path-
ways that they use as a survival tactic in such extreme 
environments. It is in this regard that the present study 
was undertaken, to have an insight into the microbial 
community thriving in this region and to unearth the 
presence of glycoside hydrolases as they are presently  
being used extensively in the biotechnological industries.

In the present study, diversity analysis was done using 
Kaiju,  Cognizer was used to obtain functional annotation 
against the COG, KEGG, Pfam, FIG, and GO databases. 
Ecological distance matrices were computed and employed 
to determine the diversity of the species. Further, to study 
the GH families, the CAZy database was employed.

Materials and method
Collection of environmental sample
Soil samples (ABS1) (100 g) at depths of approximately 10 
to 12 cm, beneath the soil surface from Samiti Lake in 
sterile plastic and glass containers, and water samples 
(ABSLW) of 2.5 L were collected from three different 
points in the lake at 1-m depth. After careful homog-
enization of the soil, they were stored at −20° C. All of 
the samples were further transported to Xcelris labs for 
DNA sequencing. The samples were pooled before pro-
cessing for DNA isolation.

Physicochemical parameters
The physicochemical properties of water like pH and 
conductivity were analyzed using Eutech’s Cyber Scan 
PCD650 (a handheld waterproof meter). The soil organic 
carbon was estimated by chromic acid method proposed 
by Walkley and Black [46], and the Nitrogen content was 
measured by the Kjeldah method [47].

Isolation of DNA and library preparation
For metagenomic analysis, the Xcelgen Soil DNA isola-
tion kit was used to isolate the DNA, and 0.8% agarose 
gel was used to detect the DNA (loaded 3 μl). Covaris 
was used to shear the DNA. Further, HiFi PCR Master 
Mix was used to amplify the fragments. The paired-end 
sequencing library was performed using NEB Next Ultra 
DNA library Prep Kit [48]. The size of libraries as deter-
mined by the Agilent bio analyzer was 470bp and 475bp 
for ABS1 and ABSLW samples, respectively. Further, the 
libraries have been submitted in NCBI with accession 
numbers SAMN13671136 and SAMN13671135. Illumina 
HiSeq 2500 platform was used to sequence the sample 
libraries on 2 × 150 bp chemistry to generate ~ 3Gb of 
data per sample.
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Metagenome analysis
Reads obtained from Illumina platform were quality 
checked using FastQC v0.11.9, and filtered to remove 
sequencing adapter as well as low-quality bases using 
Trimmomatic v0.36. Clean reads thus obtained were 
used for de novo assembly of data.  Scaffold genera-
tion  was done using Metaspades and CLC genomics 
workbench at default parameters for  ABS1 and ABSLW 
samples. While Metaspades uses de Bruijin graph, CLC 
genomic workbench uses overlap layout consensus for 
de novo assembly of reads. The scaffolds thus generated 
were subject to gene prediction using Prodigal (v2.6.3) 
followed by diversity analysis using Kaiju [49] which is 
a very sensitive taxonomy classification tool. It classifies 
the sequence at protein level using greedy mode. How-
ever, functional annotation against COG, KEGG, Pfam, 
FIG, and GO database was obtained using Cognizer [50] 
which uses novel-directed search strategy to reduce the 
computational time.

Ecological distance matrices were calculated and used 
in this study to find out all the canonical macro-ecologi-
cal species diversity. To find out the probability that two 
randomly sampled organisms belong to the same species, 
Simpson diversity index (D) was calculated [51] accord-
ing to the following:

where ni is the abundance of ith species and N is the 
total number of individual present.

Species richness and dominance were calculated in this 
study via Shannon’s diversity index (H) [52] according to 
the following:

where ni is the abundance of ith species and N is the 
total number of individual present.

In an attempt to find out species richness which is 
independent of sample size, Menhinick index has been 
calculated [53].

Calculation of Buzas and Gibson’s index [54] helped 
decipher conservation model and observe the trends of 
changes in an ecosystem.
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Berger-Parker dominance index [55] is simple math-
ematical expression relating species richness and 
evenness.

Margalef ’s diversity index [56] is a species richness 
index. Many species richness measures  are strongly 
dependent on sampling effort. The greater the sampling 
effort, higher the index value. Thus, Margalef ’s diversity 
index considers the number of taxa and total number of 
individuals.

Annotation against CAZy
The family of glycoside hydrolases (GH) is present in the 
CAZy database (www.​cazy.​org) which is a database of 
Carbohydrate Active Enzymes or CAZymes [57]. Hence-
forth, the CAZy database was used to analyze the GH 
families present in samples using dbCAN [58].

Results
Physicochemical parameters
Soil pH is an indicator of the soil’s acidity or alkalinity. 
The physicochemical parameters of the soil revealed the 
pH of the soil to be in the range of 6.25±0.14. Organic 
carbon is the amount of soil organic matter [59]  where 
the carbon content of the soil was found to be around 
1.20 ±0.03; this could also be an essential factor to indi-
cate the abundance of Betaproteobacteria  in the soil as 
elucidated from our study. Nitrogen, i.e., significantly 
important to plant  growth [60] was also checked, and 
it was found to be around 0.10±0.015. This could facili-
tate the growth of Firmicutes in the soil as they have been 
reported to play a role in nitrate metabolism [61]. How-
ever,  the pH of water was found to be neutral around 
7.12±0.07, indicating an ideal environment for bacterial 
growth. Further, conductivity, was found to be around 
204.3±0.76 μS cm-1,  a factor  used to gauge the degree 
of mineralization [62]. Overall,  Physicochemical  param-
eters are significant because its disparity can bring about 
changes in the microbial community [63].

Taxonomic annotation using standalone Kaiju
ABS1 taxonomic hits distribution shows Proteobacteria as 
the most abundant phylum represented by 78,597 genes. 
Whereas at class level, Betaproteobacteria and Deltapro-
teobacteria were found to be most abundant represented 
by 39,405 and 19,928 genes, respectively. At order level, 

(5)
nmax

N

(6)
S − 1

lnN

http://www.cazy.org


Page 4 of 11Rai et al. Journal of Genetic Engineering and Biotechnology          (2022) 20:162 

taxonomic hits distribution showed 20,510 genes for Bur-
kholderiales followed by 14,129 for Desulfuromonadales. 
The taxonomic distribution of genes for the bacterial fam-
ily revealed 11,413 gene hits on Geobacteraceae followed 
by 10227 on Commonadaceae. However, at the genus 
level, there was 5864 gene hits on Geobacter followed by 
4775 on Nitrospira. At the species level the taxonomic hit 
distribution showed 10,279 gene hits of Bacteroidetes bac-
terium GWB2_41_8 followed by 6135 gene hits on Chlor-
oflexi bacterium (Fig. 1, Supplementary Figure 1)

Taxonomic hit distribution of ABSLW shows Pro-
teobacteria as most abundant phylum represented by 
104,745 genes, with 62,779 gene hits of Alphaproteo-
bacteria followed by 26,921 hits of Betaproteobacteria at 
class level. In the bacterial order distribution, taxonomic 
hits showed 25,406 gene hits of Burkholderailes followed 
by 22,912 of Sphingomonadales. The taxonomic distribu-
tion of gene hits for the bacterial family revealed 16,940 
gene hits on Sphingomonadaceae followed by 16,038 
Rhodobacteraceae. In the genus level, there was 10,812 
gene hits of Flavobacterium followed by 10,141 on Pseu-
domonas. At the species level, the taxonomic hit distri-
bution showed 3211 gene hits of Sphingomonadaceae 
PASS1 followed by 1905 gene hits of Oxalobacteraceae 
(Fig. 2, Supplementary Figure 2).

COG functional category hit distribution
The COG database is an endeavor to categorize pro-
teins [64]. The COG functional analysis of ABS1 showed 
130,191 genes were assigned to COG  where maximum 
genes, i.e., 14,175 genes, were found to belong to general 
function prediction only (S1). COG functional analysis 
of ABSLW shows 104,334 genes assigned to COG, where 
10,667 genes were belonging to amino acid transport and 
metabolism and 11,004 genes falling into the category of 
general function prediction only (S6). The COG classifi-
cation also depicted the prevalence of the functions asso-
ciated with amino acid transport and metabolism, energy 
production and conversion, general function predic-
tion only, carbohydrate transport and metabolism, lipid 
transport and metabolism, replication, recombination, 
and repair, signal transduction mechanisms, translation 
ribosomal structure and biogenesis, post-translational 
modification, protein turnover, and chaperones in both 
the samples.

KEGG functional category hit distribution
KEGG is a collection of databases that help to predict the 
different metabolic pathways of a biological system [65]. 
In ABS1 (S4), functional analysis showed that from a total 
of 239,754 genes, 160,268  genes were assigned to KEGG 
classes. Whereas,  in the case of ABSLW (S9), KEGG 
functional analysis showed that from a total of 148,066 

genes 122,911 genes were assigned to KEGG classes. In 
both the cases, the majority of KOs comprised of metab-
olism category. ABS1 samples revealed a greater involve-
ment of two component systems, cell cycle response 
regulator, and cell cycle response regulator. However, 
methyl-accepting chemotaxis protein, ATP-binding cas-
sette, histidine kinase, and RNA polymerase sigma 70 
factor were also some of the abundant terms associated 
with KO of the ABS1 sample. The most abundant KEGG 
term in ABSLW was found to be iron complex outer 
membrane receptor protein. Some of the terms associ-
ated with the ABSLW sample were also methyl-accepting 
chemotaxis protein, acyl CoA dehydrogenase, N-acetyl-
muramayl-L-alanine amidase, and ATP-binding cassete. 
The analysis of the KEGG pathway showed diverse path-
ways and mechanisms that the microbes thriving in this 
lake use as a survival tactic to endure the extreme condi-
tions in this region.

Pfam functional category hit distribution
Pfam is a useful annotation tool for categorizing pro-
tein families [66]. Analysis of ABS1 showed that 140,559 
genes were assigned with different PFAM domains (S5). 
Likewise when ABSLW sample was analysed it resulted in 
assignment of PFAM domains to 111,508 genes,   (S10).

FIGfam functional category hit distribution
Figfams are a set of proteins that share a common func-
tion [67]. FIGfams functional analysis of ABS1 (S2) 
showed that  from total of 239,754 genes, 84,544 genes 
were assigned with  different FIG classes. On the other 
hand 62,074 genes were assigned to  different FIG 
classes for ABSLW (S7).

Gene Ontology (GO) functional category hit distribution
The Gene Ontology project represents gene product 
properties [68]. Henceforth, GO functional analysis was 
carried out for ABS1 and ABSLW samples. It resulted 
in assignment of 181,375 and 143,201 genes with GO 
classes, for ABS1 and ABSLW respectively (S3,S8).

Alpha (α) diversity index
The Simpson index represents the species diversity in a 
particular habitat. According to our results, the Simp-
son index was 0.022 (water) and 0.16 (soil). This index 
represents higher diversity in the habitat. Simpson’s 
reciprocal index for water and soil samples was 47 and 
6.3, respectively. The Shannon index calculated from 
water and soil samples was 4.2 and 3, respectively, sug-
gesting an even distribution of species. The Menhin-
ick index for both water (.41) and soil (.054) indicates 
a richness of species. Here, in our results, Buzas and 
Gibson’s index were found to be.76 and.8, respectively, 
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for water and soil samples, indicating that the species 
in almost both the samples were evenly distributed. The 
Berger Parker dominance of the water sample has an 

index of 0.077, and the soil sample has an index of 0.3, 
which suggests the samples have higher richness and 
more abundance. Margalef ’s index, in the water sample 

Fig. 1  The figure depicts the abundance of bacterial communities of ABS1 sample at different taxonomic units (Phylum Family and Genus). Lesser 
than 1% of the distribution were together labeled as "Others" 
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(7.8) and in the soil sample (.86), signifies abundant 
diversity (Table 1).

Glycoside hydrolase
Our study shows an abundance of GH13, GH2, GH3, 
GH43, and GH23 in both the soil and water samples in 
high numbers as is evident from the (Fig. 3); however, the 
presence of GH53 was abundant in ABS1 compared to 
ABSLW.

Discussion
Our study has indicated an abundance of Proteobac-
teria in this region, which is very similar to the reports 
by Gangwar et  al. [21] who revealed a predominance 
of Proteobacteria, in Western Himalayas. Reports 
from  Pangong lake, Tsomgo Lake [9, 69], some of the 
high-altitude Himalayan lakes, Alpine lakes of Heng-
duan Mountain [70], and Sayram lake [71] have also 

Fig. 2  The figure depicts the abundance of bacterial communities of ABSLW sample at different taxonomic units (Phylum Family and Genus). Lesser 
than 1% of the distribution were together labeled as "Others" 

Table 1  The table shows the alpha diversity index of water and 
soil of Samiti lake
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reported the abundance of Proteobacteria. Many mem-
bers of Proteobacteria are involved in the metabolism 
of sulphate and nitrate [61]. Proteobacteria have been 
reported to play significant roles in carbon sequestration 
and nitrogen cycling [72]. The abundance of AlphaPro-
teobacteria in water sample is well justified as it requires 
minimal amount of nutrients [73]. However, the pres-
ence of Betaproteobacteria in the soil sample elucidates 
the fact that it extensively utilizes the nutrient of the soil. 
The abundance of Firmicutes also sheds light on its role 
in nitrate, methane, and sulphate metabolism as has been 
reported by Haldar et al. [61].

Studies conducted widely over polar and non-polar 
glaciers have also reported the presence of genera like 
Proteobacteria, Actinobacteria, and Flavobacteria [74]. 
At the genus level Flavobacterium was the most abun-
dant taxon in water. Flavobacteria have been reported 
to play an imperative role mineralizing poorly degra-
dable macronutrients and providing their surrounding 
environments with carbon flux regulators [75]. Genus 
Flavobacterium are considered as chief mineralizers of 
organic matter, numerous reports of their isolation from 
soil [76], water [77], Antarctic regions [78], and glacier 
samples [79] have been described. Further, it has been 
reported that many members of Geobacter play a role 
in carbon and metals cycling in aquatic sediments and 
also help in the bioremediation of metal-contaminated 
groundwater and harvesting of electricity [80, 81]. They 
have been found to play significant roles in both pris-
tine and contaminated subsurface environments [82, 

83], also helping in bioremediation [84]. Moreover, some 
Geobacter species have been reported to help in sulfur 
reduction, [85] where most of the mechanisms of sulfur 
reduction relates to elemental sulfur being converted 
to H2S [86], ultimately, sulfide the ultimate byproduct 
serves as an electron donor for a wide range of microbial 
metabolisms [87].

Glycoside hydrolases facilitate carbohydrate degra-
dation and are thus sought after enzyme in different 
industries [88]. The abundance of GH13 in this lake 
indicates the predominance of α-amylase (very signifi-
cant in the hydrolysis of starch and related poly- and 
oligosaccharides) [89] as its been reported as an essen-
tial representative of the GH13 family [89]).   Numer-
ous reports of microbial α-amylases in bioremediation 
and biorefinery [90, 91] also highlights its importance. 
The prominence of GH43 also indicates the presence of 
many enzymes under GH43 involved in the breakdown 
of pectin and hemicellulose polymers [92]. Another 
major industrially important enzyme β-galactosidases 
are glycoside hydrolases (GH) that give galactose 
molecules by hydrolyzing glycosidic bonds [42]. 
Galactosidases hold great potential in industrial and 
biotechnological applications [42]. These enzymes are 
ubiquitous and have been isolated from diverse and 
extreme environments [42, 93]. The lake also has the 
presence of high quantity of GH3, and since this lake 
is located at a very high altitude, it could also pos-
sess psychrophilic and psychrotrophic β-glucosidase. 
Recent, reports on psychrophilic Paenibacillus sp. for 

Fig. 3  The heat map depicts the presence of glycoside hydrolases in ABS1 and ABSLW samples
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production of cold-active β-glucosidase belonging to 
GH3 family have been elucidated [41]. The abundance 
of GH2 in this lake predicts that this lake could har-
bor cold active GH2s, as this lake is located at a very 
high altitude. The application of numerous cold-active 
GH2s having potential in alkyl galactopyranosides syn-
thesis and lactose hydrolysis has been reported from 
Pseudoalteromonas sp. 22b and Pseudoalteromonas 
haloplanktis [94, 95]. The presence of GH23, which is 
very prevalent in  cell wall degradation [88] has also 
been reported in this lake. Further, the abundance of 
GH53 in the soil sample could facilitate the growth of 
probiotic strains in this lake as GH53 has been reported 
to break down  Galactooligosaccharides [96]. The 
unknown richness of this lake may also hold a wealth of 
biotechnological uses, as earlier studies of the Himala-
yan range have described [97, 98].

Conclusion
The presence of varied microbial diversity in this lake 
predicts a thriving ecosystem, housing different species 
living in harmony, and building a repository of varied 
metabolic functions to keep the lake thriving and alive. 
It also reports the functional characteristics of the micro-
bial diversity, and the different metabolic approaches 
employed by these microorganisms for their survival in 
these  extreme conditions. This includes different genes 
involved in defense mechanisms, signal transduction 
mechanisms, transcription, co enzyme transport, and 
metabolism that they use to survive at this high-altitude 
and extreme changing environmental conditions. The 
abundance of glycoside hydrolases highlights the fact that 
this lake could be a repository of numerous psychrophilic 
and psychrotrophic glycoside hydrolases, thus paving 
the way towards a novel discovery that could be benefi-
cial in bio refinery and bioremediation sectors. However, 
further studies based on the intricacies of carbohydrate 
deconstruction, and the mechanism of the microbial 
community involved in the breakdown of the polymer 
could provide a breakthrough in CAZyme research. The 
diverse metabolic pathways depicted through this study 
gives us an insight into the larger scope of exploration 
of microbes with bioprospective potential. However, the 
recent anthropogenic activity has definitely remained a 
threat to the prevailing ecosystem, and the effect of cli-
mate change in recent times has also threatened the 
microbial diversity of such ecological hotspots. Moreo-
ver, the discovery of novel microbes with psychrophilic 
properties that are involved in xenobiotic degradation 
and catabolism of recalcitrant chemicals could also prove 
to be a promising feat for designing bioremediation 
approaches if required.
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