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Abstract 

Background:  Leprosyis caused by Mycobacterium leprae and Mycobacterium lepromatosis. Most of the affected 
population lives in low-income countries and may take up to 10 years to show any clinical signs, which is how physi‑
cians diagnose it. However, due to progressive cell damage, early diagnosis is very important. The best way to confirm 
leprosy is through bacilloscopic, which only confirms the diagnosis and has low accuracy or PCR, that requires 
specialized operators and is expensive. Since the bacteria are fastidious and do not grow in any culture media, there‑
fore, diagnosing leprosy in the lab is still a challenge. In this concern, a recombinant multi-epitope protein can be a 
beneficial strategy in the management of the diagnosis, as diverse immunogenic epitopes are precisely selected to 
detect specific antibodies. Therefore, the purposes of the present study were to select immunogenic epitopes from 
different relevant proteins, with immunogenic properties, and then to construct a recombinant multi-epitope protein 
that accuses the presence of the antibodies in the early stages of the disease, making it more than appropriate to be 
applied as a diagnostic tool.

Results:  We selected 22 common proteins from both species and, using bioinformatics tools, predicted B and T cell 
epitopes. After multiple filtering and analyzing, we ended up with 29 epitopes {MHC-I (total 18) and MHC-II (total 11)} 
from 10 proteins, which were then merged into one construct. Its secondary and tertiary structures were also pre‑
dicted and refined to comprise the amino acid residues in the best conformation possible. The multi-epitope protein 
construct was stable, non-host homologous, non-allergic, non-toxic, and elicit humoral and cellular responses. It has 
conformational B cell epitopes and potential to elicit IFN-γ, IL-4, and IL-10 secretion.

Conclusions:  This novel recombinant multi-epitope protein constructed using the common epitopes from M. leprae 
and M. lepromatosis has a huge immunological potential, is stable, and can be lyophilized to be used in ELISA plates or 
even in biosensors, which are user-friendly diagnosis tools, facilitating translation into human sample tests.
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Background
Only in 2019 the WHO (World Health Organization) 
reported 202,226 new cases of Leprosy worldwide, 
with almost 80% of the cases in just 3 countries: India, 
Brazil, and Indonesia (114,451, 27,863, and 17,439, 
respectively) [1, 2]. Leprosy is caused by Mycobacte-
rium leprae and Mycobacterium lepromatosis, which 
can invade Schwann cells [3] affecting both the der-
mis and peripheral nerves [4]. The cell invasion causes 
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nerve demyelination through nerve cell communication 
deregulation [5]. The damage to the myelin causes per-
manent loss of thermal and tactile sensibility, besides 
pain sensation [4]. Leprosy may take up to 11  years 
until any clinical manifestation occurs, but even before 
that, it is transmissible [6, 7].

The immunological response in leprosy is highly 
dependent on the host’s genetic background, and it drives 
its clinical manifestations [6, 7]. The leprosy spectrum 
ranges from tuberculoid leprosy (TL) to lepromatous lep-
rosy (LL). In TL, the immune response has mainly a cellu-
lar profile, with a Th1 response, producing cytokines like 
interferon gamma (IFN-γ), interleukin (IL)-2, and IL-12. 
On the other hand, the LL pole has a Th2/Th17 response, 
with more antibody titers; IL-10, IL-4, and IL-13 secre-
tion;, and a higher bacillary load [8, 9]. Between those 
poles exist borderline tuberculoid (BT), borderline-bor-
derline (BB), and borderline lepromatous (BL) clinical 
manifestations, with mixed immunologic characteristics, 
ranging from the Th1 profile to the Th2/Th17 according 
to the poles [10]. The borderline presentation is the one 
that most of the patients fit, and the nerve involvement is 
more severe, causing higher levels of disability [11].

The leprosy diagnosis is mainly based on clinical and 
laboratorial evaluations. Due to the progressive cell dam-
age, the early diagnosis is very important; however, most 
diagnoses are performed when there is already a signifi-
cant nerve damage [12]. The best way to confirm leprosy 
is through PCR, which requires specialized operators, 
is expensive, and is very difficult to be conducted in the 
field. Another option is bacilloscopic, which is not used 
as a diagnosis, only as confirmation of the clinical diag-
nosis, and has low accuracy. Serological tests exist only 
based on M. leprae and are not sensitive enough, detect-
ing only LL and symptomatic cases, but not PB [13–15]. 
The bacteria are fastidious and do not grow in any cul-
ture media; therefore, diagnosing leprosy in the lab is 
still a challenge [8]. Given the different immunological 
responses, van Hooij et al. established that the combina-
tion of humoral and cellular detection is efficient in diag-
nosing both MB and PB [16, 17].

To try and stop the transmission of new leprosy cases, 
the WHO set a few objectives to be fulfilled from 2016 
to 2020. One of the objectives was the development of a 
new diagnosis tool [18]. Since most of the affected popu-
lation lives in lower-income countries, they do not have 
access or cannot afford the number of tests necessary for 
all the population at risk [16, 19], and the serum or whole 
blood-based assays are not conclusive for all types of lep-
rosy [16]. This situation leaves the population with only 
the possibility of discovering the disease after clinical 
manifestations, increasing the transmission [20, 21] and 
making it difficult to finish the cycle.

Bioinformatics tools are of the utmost utility to assess 
the immunogenic peptides within a protein, saving time, 
money, and even diminishing the use of animals, since it 
provides multiple filters before in vitro and in vivo tests 
are performed [22–25]. Given that M. leprae and M. lep-
romatosis are not yet cultivable in any culture media [8], 
bioinformatics is the best way to assess its proteins and 
their immunogenic potential. It also provides the pos-
sibility to create recombinant multi-epitope constructs, 
which can hold several antigenic epitopes, differing from 
natural proteins or whole-cell preparations [26]. Multi-
epitope proteins can be used in enzyme-linked immu-
nosorbent assay (ELISA), lateral flow tests, biosensors, 
and cellular assays, which require minimal or zero sam-
ple preparation. These constructs may also increase the 
sensitivity and specificity of the detection method, given 
that it is possible to assess homology relations with other 
microorganisms and permits the fusion of epitopes from 
different proteins and different sites of the organism. The 
multi-epitope constructs enable a higher immunogenic 
density and diminish the cross-reaction risk of whole 
bacteria antigen, which is common in leprosy diagnosis 
[27]. Diseases such as hepatitis B [23], Chagas disease 
[28], cryptococcosis [25], leishmaniosis [29, 30], tuber-
culosis [31], and toxocariasis [32] already have great 
results with recombinant multi-epitope proteins in their 
diagnosis.

The largest challenge of the multi-epitope diagnosis 
is to construct a chimeric protein with all the epitopes 
exposed to interact with the antibodies, as the coiling 
event predicted can be different in practice [33]. Fur-
thermore, despite the advances in genetic engineering 
and recombinant expression technologies, some obsta-
cles endure in protein production as toxicity, instability, 
inability to fit the environment, and errors in expression 
vector selection, among others [34].

There is an effective therapy against leprosy, the multi-
drug therapy (MDT) program [35]; however, if the diag-
nosis is not made early in the disease, the nerve damage 
is unrecoverable, causing persistent physical damage [36]. 
Hence, to improve the diagnostic tools for this severe 
disease, we propose a novel recombinant multi-epitope-
based antigen, using bioinformatics tools. To be able to 
diagnose both strains that cause the disease, 22 common 
proteins of M. leprae and the recently described M. lepro-
matosis were selected.

The purposes of the present study were to select deeply 
immunogenic epitope proteins, with immunogenic prop-
erties or certified to be detected in diagnosis tests, and 
then to construct a recombinant multi-epitope protein 
that could be applied as a diagnostic tool. Advanced 
techniques in protein structure design and evaluation 
were performed to build a stable and safe multi-epitope 
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protein. Also, in silico cloning was applied to arrange 
codon bias to get an idea about the capacity of the pro-
tein to be expressed.

Methods
The complete workflow of the methodology used in this 
study is described in Fig. 1.

Data selection
The M. lepromatosis and M. leprae proteins ML0091, 
ML0405, ML1636, ML2055, ML2331, ML2346, and 
ML1556 were previously proved to detect leprosy at 
some level [26]. ML2028, ML2055, ML2380, and ML2531 
were tested as immunizers in mice, and they demon-
strated reduced bacterial burden [4]. NP_301196.1, 
NP_301663.1, NP_301805.1, NP_301958.1, NP_302056.1, 
NP_302185.1, NP_302232.1, NP_302292.1, NP_302342.1, 
NP_302490.1, and NP_302503.1 were obtained as immu-
nogenic proteins from our previous results, through 
reverse vaccinology analysis [37]. The sequences of these 
proteins were retrieved from National Center for Bio-
technology Information (NCBI) in FASTA format [38]. 
The antigenicity of these selected proteins was evaluated 
by VaxiJen [39]. In total, 22 proteins shared among both 
strains were used for the next steps.

Prediction of epitopes that binds to MHC I alleles
The epitopes able to bind to MHC I alleles and activate 
cytotoxic T lymphocytes (CTL) were predicted by two 
different platforms to improve the confidence of the 
prediction. The Immune Epitope Database and Analy-
sis Resource (IEDB) contain thousands of high- and 

low-affinity epitopes used in training to enhance the 
accuracy of the predictor [40, 41]. Aiming to develop 
a diagnostic tool to be used in all endemic areas, we 
selected all 27 alleles with high frequency in the global 
population. The lengths of our peptides were 9 amino 
acid residues [42]. Default parameters were chosen 
for the prediction since they combine artificial neural 
network (ANN), scoring matrix method (SMM), and 
combinatorial library. Epitopes with percentile rank 
smaller than 1% were selected for our study, due to their 
enhanced probability to be immunogenic. NetCTL-1.2 
server can assess binding affinity, antigenic processing, 
and transportation, integrated into the epitope predic-
tion, using both ANN and SMM to make the predictions 
[43, 44]. The same alleles used in IEDB were used in 
NetCTL-1.2.

Prediction of epitopes that binds to MHC II alleles
For epitopes that activate helper T lymphocyte (HTL) 
(MHC II-binding epitopes), we also used two different 
predictors, IEDB tool [40] and NetMHCII-2.3 server 
[45]. The MHC II cleft size can accommodate epitopes 
from 13 to 25 amino acids; thus, we chose to use a 15-res-
idue length as a standard, since the NetMHCII-2.3 server 
allows users to use this length, approving the compari-
son between both programs. In IEDB, we selected only 
epitopes with percentile rank lower than 3%. For the 
IC50, which is used to determine the epitopes’ affinity 
with the MHC, we chose an IC50 < 1000 nM [45]. ANN 
is also used by the NetMHCII-2.3 server with various 
epitope databases to increase data training and predict 
the epitopes [46].

Fig. 1  A–E Graphical representation of the pipeline used in this study to design a universal recombinant multi-epitope antigen for leprosy 
diagnosis
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Prediction of B cell epitopes
To predict linear B cell epitopes, we used ABCpred 
[47, 48] which uses ANN for predictions and LBtope 
server [49] which uses the support vector machine 
(SVM)-based models for the prediction. We chose the 
epitope’s length as 16 due to its better accuracy prop-
erties [48, 50, 51].

Filtering and immunogenicity assessment of MHC I 
epitopes
All the epitopes predicted were filtered through an in-
house python script which compare the results from 
both programs for each epitope (Fig.  1A). After the 
recognition of epitopes predicted by the two programs, 
the same script was used to find overlapping epitopes 
between B cells and MHC II with at least nine sequen-
tial amino acid residues. The last time that the script 
was used was to search for the overlap between class 
I epitopes predicted as immunogenic by the immuno-
genicity tool and the remaining class I epitopes. Class 
I immunogenicity tool [52] uses amino acid properties 
and their position within the peptide to predict immu-
nogenic properties. Only peptides with a score greater 
than 0.1 were chosen.

Sequence construction
The epitopes that passed through all those filters 
were then merged into different constructs with the 
sequence AAY for MHC I epitopes and GPGPG for 
MHC II as peptide linker sequences, which help in pro-
tein folding [53].

Evaluation of host homology and physical–chemical 
properties
To evaluate the similarity between the constructed pro-
tein with human proteins, and therefore reduce auto-
immunity possibilities, a BLASTp was carried out. The 
whole multi-epitope protein sequence and its indi-
vidual epitopes were submitted against the UniProtKB 
Human database.

Molecular mass, theoretical pI, extinction coeffi-
cient, aliphatic index, grand average of hydropathicity 
(GRAVY), estimated half-life for three model organisms 
(Escherichia coli, yeast, and mammal cells), and the insta-
bility index were analyzed through the final construct 
sequence using ProtParam [54]. Solubility index was 
also assessed by Protein-Sol [55], which evaluates several 
properties based on E. coli expression data.

Secondary structure prediction
The secondary structure of the final epitope construct 
was predicted by RaptorX template-based protein 

structure modeling server [56] and PSIPRED. PSIPRED 
predicts the secondary structure and generates the pic-
tures by applying complex ANN and position-specific 
scoring matrix (PSSM) [57].

Structural modeling, refinement, and properties 
assessment
To predict the tertiary structure (3D), three different pro-
grams were used, and the best 3D structure was chosen 
based on its structural quality. For the evaluation, PRO-
CHECK was used through SAVES v6.0 [58, 59] to gen-
erate the Ramachandran plot. Phyre2 intensive method 
comprises the multiple alignments of the sequence of 
interest with homologous sequences using threading and 
ab initio techniques followed by the secondary structure’s 
prediction with the PSIPRED. Then, a hidden Markov 
model (HMM) is determined with the information from 
these two steps combined. The models with the best 
scores are used, from a search in an HMM database of 
known protein structures, to determine the modeling 
and error correction [60]. Multiple-template threading 
(MTT) and scoring methods are used in RaptorX to pre-
dict the 3D structures and to indicate the quality of mod-
els predicted [56]. Finally, I-TASSER uses an interactive 
method based on the templates according to fragment 
assembly simulations with further refinement to con-
struct the models [57].

To enhance he local and global quality of the modeled 
3D structure, we used GalaxyWeb Server which applies 
the methods for the refinement of amino acid side chains 
using light and aggressive relaxation approaches [61].

Antigenicity, IFN‑γ, IL‑4, and Il‑10 inducing potential
The final construct sequence was analyzed for crucial 
aspects related to the induction of immune responses, 
toxicity, and allergenicity. We used VaxiJen to assess the 
antigenic capacity through the automatic cross-covar-
iance method, thus analyzing the physical–chemical 
properties and predicting the ability to induce immune 
responses without the need to do alignments [39].

The search for epitopes able to induce IFN-γ produc-
tion was performed with the IFNepitope predictor, using 
MHC II epitopes. This predictor uses a SVM hybrid 
method based on motifs to perform the prediction [62]. 
IL-4 and IL-10 inductions were also assessed by differ-
ent predictors (IL-4Pred and IL-10Pred), by the same 
method [63, 64]. The ProInflam web server was used as 
well to predict the pro-inflammatory potential of the 
peptides included in the protein [65].

Conformational B cell epitopes prediction
The ElliPro web-based tool was used to predict con-
formational B cell epitopes from the refined predicted 
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structure of our multi-epitope protein [66]. These 
epitopes are generally conformational, which means 
they are away in linear distance but close in spatial 
proximity [67].

In silico cloning
To verify the capacity of cloning and expression of the 
multi-epitope protein in an appropriate expression 
vector, we performed in silico cloning. Using JCat, we 
adapted the codon of our peptide according to the E. coli 
K12 expression system’s codon usage through reverse 
translation. With the cDNA-optimized sequence, the 
codon optimization for E. coli k12 was performed, and 
it returned the Codon Adaptation Index (CAI), which 
must have a score higher than 0.8, and the GC content 
rate should be between 30 and 70%. Furthermore, to 
clone the final optimized gene sequence, we used the 
pET28a( +) vector obtained from the Addgene web-
site (https://​www.​addge​ne.​org/), with Blpi and BamHI 
restriction sites. Finally, the optimized sequence was 
inserted into the pET28a( +) vector using the SnapGene 
tool [68] to ensure protein expression.

Results
Prediction of B, CTL, and HTL epitopes
All the selected proteins had predicted antigenicity, 
assessed by VaxiJen analysis, showing their capacity to 
recognize peptides of immunological relevance (Addi-
tional file  1: Table  S1). The 21 proteins submitted at 
ABCpred generated a total of 729 epitopes and 2098 in 
LBtope. Using the in-house python script, we searched 
for overlapping epitopes that were predicted by both 
programs, in order to find common epitopes, and it 
returned 227 B cell shared epitopes (Additional file  1: 
Table S2). For cytotoxic T lymphocyte (MHC I), we used 
IEDB MHC-I binding predictions and NetCTL 1.2 server. 
The first program predicted 2273 epitopes and the lat-
ter 1146, with 992 common epitopes predicted by the 
two software (Additional file  1: Table  S3). IEDB MHC-
II binding predictions and NetMHCII 2.3 were the tools 
used for MHC II epitope prediction, with 637 and 3734 
epitopes, respectively. There were 586 common epitopes 
found (Additional file 1: Table S4).

Epitope’s screening
To find epitopes with the potential to induce both 
humoral and cellular immune responses, we applied the 
in-house python script, searching for overlaps between 
MHC II (637) and B (227) epitopes, with similarity of at 
least nine sequential residues. At this screening step, we 
reduced the total number of MHC II and B epitopes to 
40 overlapping epitopes (Additional file 1: Table S5). By 
applying the class I immunogenicity tool, we predicted 

the 350 most immunogenic epitopes, with scores greater 
than 0.1 (Additional file 1: Tables S5 and S6), using the 
previous common MHC I epitopes (992). Those 350 
epitopes were, then, overlapped with the 40 ones result-
ing from humoral and cellular overlap (MHC I with B 
cell epitopes overlapping), giving a total of 20 epitopes 
(Additional file 1: Table S5) Fig. 1A.

From the 20 selected MHC I epitopes, we compared the 
sequence and its percentile rank. MHC I epitopes with 
only one or two residues of difference were excluded, 
using the lowest percentile as a parameter. As a result, 
a total of 29 {MHC-I (total 18) and MHC-II (total 11)} 
epitopes, from 10 proteins, were selected for the final 
recombinant multi-epitope construction (Table 1).

Multi‑epitope sequence construction: structural modeling, 
refinement, and properties assessment
Different amino acid sequences were constructed with 
the selected epitopes to evaluate and select the one with 
the best structure quality. To give our construct flexibil-
ity to make its conformational changes, we joined these 
sequences with different peptide linkers since they assist 
in protein folding, which is important for the conforma-
tional epitopes [67]. For MHC I, we used AAY linkers, 
and for MHC II, we used GPGPG, forming a 431-amino 
acid multi-epitope protein; however, we made changes 
in the positions of epitopes. All sequences were submit-
ted to the structural prediction in I-TASSER, Phyre2, 
and RaptorX. Afterward, a Ramachandran plot was con-
structed for all the amino acid sequences.

The best structure quality obtained was the one mod-
eled by RaptorX, with 86.2% of the residues in the most 
favored regions, 9.1% in the additional allowed regions, 
2.1% in the generously allowed regions, and 2.6% in the 
disallowed regions (Fig. 2A, B). We performed the refine-
ment with GalaxyWeb Server, getting the best result with 
model 5, with 86.6% of the residues in the most favored 
regions, 12.5% in the additional allowed regions, 0.6% 
in the generously allowed regions, and 0.6% in the disal-
lowed regions (Fig. 2C, D).

Secondary structure prediction
According to PSIPRED and RaptorX, the predicted sec-
ondary structure has 431-residue protein, 31% helix, 20% 
beta-sheet, and 47% loop formation (Additional file  1: 
Fig. S1).

Host homology and physical–chemical properties
Host homology was performed through NCBI BlastP 
with Homo sapiens (taxid 9606), and no significant simi-
larity was found.

The protein’s molecular mass is 46,779.35 (46.7  kDa), 
with a theoretical pI of 9.38, which means its behavior 

https://www.addgene.org/
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is at basic pH. The protein is considered stable since the 
instability index is 29.99. The aliphatic index is 91.79, 
also showing stability in changes in temperature. Positive 
great average of the hydropathy value (GRAVY) scores 
mean hydrophobicity, as our result is 0.489.

The solubility analysis performed through Protein-Sol 
described a score of 0.382, which is lower than the tool 
threshold of 0.45. The threshold corresponds to E. coli 
solubility, and scores higher than 0.45 has a higher solu-
bility average.

Antigenicity, cytokine‑inducing potential, 
and conformational B cell epitopes
The application of multi-epitope protein in cell-based 
in  vitro platforms depends on its ability to be antigenic 
and to induce cytokine production. The designed pro-
tein had a predicted antigenicity score of 0.5596 through 
VaxiJen which means it is probably antigenic. The tool 
IFNepitope predicted two epitopes as probable IFN-γ 
inducer, and IL-4Pred and ProInflam predicted five and 
IL-10Pred four epitopes (Table  2). ElliPro predicted 
six linear and two conformational epitopes with scores 
greater than 0.7 (Table 3).

In silico cloning
The codon adaptation Jcat software analysis showed that 
the GC content of the constructed sequence is 56.07%, 
and the CAI (Codon adaptation index) index is 1.0. 
Both are within the parameter range, which is impor-
tant to measure the cloning and expression potential. In 
order to construct the cloning vector, through the Snap-
Gene tool, restriction site sequences of the enzymes 
BipI and BamHI were inserted in the expression vector 
pET28a( +) (Addgene) totalizing 6310 base pairs in the 
complete clone length (Fig. 3).

Discussion
In fact, there is a successful treatment for leprosy. How-
ever, the damage caused by the disease, due to the lack 
of accurate and early diagnosis, causes irreversible 
damage which highlights the need for highly sensitive 
detection tools for rapid diagnosis and epidemiologi-
cal surveillance of the disease [35]. Also, in addition 
to being a neglected disease, many studies consider 
only M. leprae as the focus of their studies. Here, we 
chose to develop a universal chimeric protein that can 

Table 1  Final list of the selected epitopes

Protein B/MHC II Percentile rank MHC I Percentile rank

ML0091 TLAIASPCAYFLVYEP 8.3 SPCAYFLVY 0.05

ML2346 AVLWELGYRRFAYVDQ 5.5 LGYRRFAYV 0.95

VLWELGYRR​ 0.35

ELGYRRFAY 0.13

GVTYHYIDVPARTFAS 3.7 YIDVPARTF 0.23

ML2380 HWGNWAKIFFNNKGVV 6.2 HWGNWAKIF 0.31

NP_301196.1 RWKWHDPYVHASLLAQ 2.6 RWKWHDPYV 0.53

NP_301958.1 GVLIFAAILVTGFLWP 2.7 VLIFAAILV 0.18

VTGFLWPAW 0.88

LVTGFLWPA 0.16

FLWPAWLVT 0.12

FAAILVTGF 0.52

AILVTGFLW 0.51

NP_302056.1 MSTIFGQVTTKEKQCQ 1.4 IMSTIFGQV 0.16

NP_302185.1 VLVFDAHRGMVVGSPL 8.1 LVFDAHRGM 0.25

NP_302292.1 TNIGLVSCKRDVGAAV 2.4 MVVTNIGLV 0.25

NP_302342.1 TRFVAAHGAYLVWLEQ 1.1 FVAAHGAYL 0.1

NP_302503.1 TFTKPEILTRYLNLVS 2.1 KPEILTRYL 0.06

Fig. 2  3D structure and the Ramachandran plot of the recombinant protein structure before and after. A Tertiary structure generated by the Phyre2 
server. B Ramachandran plot for 3D structure generated by Phyre2 showed 86.2% of the residues in favored regions, 9.1% in allowed regions, and 
2.6% in disallowed regions. C Representing the refined tertiary structure obtained by the GalaxyRefine server. D Ramachandran plot for the 3D 
structure generated by GalaxyRefine showed 86.6%, 12.5%, and 0.3% of the residues in favored, allowed, and disallowed regions, respectively

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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identify not only M. leprae, but also M. lepromatosis 
infection, increasing the chance of diagnosis.

For being fastidious bacteria, M. leprae and M. lep-
romatosis were never cultivated in axenic media [8], 
which heightens the difficulty to work with them. That 
said, bioinformatics is an optimistic alternative, as it 
enables us to run innumerous tests without the bacte-
ria, only with its genome.

ML0091, ML2380, and ML2346 were first described 
by Cole et al. in 2001 [69]. The first ones are similar to 
M. tuberculosis Rv3810 and Rv0455c proteins, but, as it 
was described, no homology was found in our construct. 
On the other hand, ML2346 has no known homology 
[13, 59]. As to its function, ML0091 is a 28-kDa antigen 

precursor, ML2380 is a possible secreted protein, and 
ML2346 is a hypothetical protein [69].

Duthie et al. tested ML0091 and ML2346 against the 
patients’ sera from Goiânia, Brazil, having a positive 
response in 71% and 29% of the cases, respectively [14]. 
The protein ML2328 was also used in the construc-
tion of LepVax (a subunit vaccine against M. leprae) by 
Duthie et al. [4].

The other proteins used were predicted by our group 
[37] in a reverse vaccinology approach; NP_301958.1, 
NP_302056.1, NP_302292.1, and NP_302503.1 are 
secreted proteins, and NP_302185.1, NP_301196.1, and 
NP_302342.1 are putative surface-exposed proteins. 
All these proteins are components of the core genome 
from four strains of M. leprae and two strains of M. lep-
romatosis. Since the definition of the core genome is to 
be present in all strains analyzed, it makes our recom-
binant multi-epitope protein a good candidate to diag-
nose the disease caused by any of them.

Given that diagnosis of leprosy is essential for treat-
ment initiation and the earlier it begins, the better the 
response [54], many are the attempts to create a diag-
nostic approach that can detect leprosy in all its spec-
trum [63] and before any clinical sign [54, 63, 64], since 
infected individuals can spread the disease even before 
that [16]. Even though PCR is effective [63], leprosy is 
endemic in areas of difficult access or poverty, which 
makes its laboratory diagnosis hard [65]. Here, we pro-
pose a chimeric protein that has the potential to detect 
both humoral and cellular responses, which is established 
as efficient in diagnosing leprosy [10, 66, 67, 70] even in 
a not-so-controlled environment and with a lower cost 
than PCR.

Immunoinformatics is an in silico approach that 
helps in predicting epitopes that have a greater chance 
to be immunogenic; nevertheless, it may not be accu-
rate if we take into consideration that proteins undergo 
unique biological complex processes driven by genet-
ics to be presented as an epitope by a cell [20, 22, 71]. 
Nonetheless, several multi-epitope constructs are 
already described as being effective, for example, LID-
1, a fusion construct of ML0405 and ML2331 that can 
diagnose MB leprosy 6 to 8 months prior to the onset 
of clinical symptoms [14]. LepReact, a delayed-type 
hypersensitivity skin test, made from LID-1, was able to 
detect antigen-specific immune responses from M. lep-
rae in guinea pigs and armadillos [72]. As to other dis-
eases, Chagas disease detection can be improved using 
TcF43 and TcF26, proteins derived from the fusion of 
selected T. cruzi TR proteins [28]; Yin et  al. validated 
a high-accuracy ELISA assay using a recombinant pro-
tein for diagnosis of human brucellosis [27]; Ebrahimi 

Table 2  Predicted IFN-γ inducer, IL-4Pred, and ProInflam-
inducing epitopes

Epitopes Score

IFN AILVTGFLWPAWLVT 0.02

TRFVAAHGAYLVWLE 0.29

ProInflam AVLWELGYRRFAYVD 0.95

GVTYHYIDVPARTFA 0.84

WGNWAKIFFNNKGVV 0.94

YVHASLLAQNNTRVW 0.87

TRFVAAHGAYLVWLE 0.70

IL-4 LAIASPCAYFLVYEP 0.27

AVLWELGYRRFAYVD 0.35

GVTYHYIDVPARTFA 1.30

WGNWAKIFFNNKGVV 1.28

TRFVAAHGAYLVWLE 0.22

IL-10 AVLWELGYRRFAYVD 0.54

YVHASLLAQNNTRVW 0.56

AILVTGFLWPAWLVT 0.35

VLVFDAHRGMVVGSP 0.32

Table 3  The B cell conformational epitopes with a PI score 
greater than 0.7

Residues Score

A324, A325, A327, I328, L329, V330, T331, G332, F333, L334, A336, 
A337, Y338, V339, T340, G341, F342, L343, W344, P345, A346, 
W347, A348, A349, Y350, and T353

0.80

R235, A237, Y238, V239, A240, A241, Y242, V243, L244, W245, E246, 
L247, G248, Y249, R250, R251, A252, A253, Y254, E255, L256, G257, 
Y258, R259, R260, Y278, H279, G281, N282, W283, A284, K285, 
F287, A288, A289, Y290, R291, Y302, T371, A372, Y374, I375, M376, 
S377, T378, I379, F380, G381, Q382, V383, A384, A385, Y386, L387, 
V388, F389, D390, A391, H392, R393, G394, M395, A396, A397, 
M399, V400, V401, N403, I404, L406, V407, A408, Y410, F411, A413, 
A414, H415, G416, A417, Y418, L419, A420, A421, Y422, K423, 
P424, E425, I426, L427, T428, R429, and L431

0.73
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et al. developed a multi-epitope protein with potential 
epitopes for the diagnosis of human toxocariasis [32].

Most of these tests are directed to humoral immunity, 
which is one of our goals, since it is less expensive and 
has a good accuracy in LL and MB leprosy, where anti-
bodies are more present [8–10]; however, cellular assays 
may enable the detection of TT and PB leprosy. Sampaio 
et  al. described IFN-γ secretion upon antigen-specific 
stimulation as an indicator of progression to the tubercu-
loid pole and IL-4 or IL-5 as an indicator of progression 
to the lepromatous pole [73].

T cell interferon-gamma release assays (IGRA) were 
developed as an alternative for delayed-typed hyper-
sensitivity tests for latent tuberculosis diagnosis, reduc-
ing false-positive results [74, 75]. Since we found two 
IFN-γ, five IL-4, four IL-10 inducing epitopes, and five 
epitopes that induce pro-inflammatory responses within 
our protein, these properties point to a recombinant 
multi-epitope protein that can be used in a cytokine 
production assay, similar to the aforementioned IGRA, 
being able to detect different cellular immune profiles 

associated to different clinical manifestations of leprosy. 
IL-10 together with IL-4 is known to be associated with 
LL pole and MB leprosy while IFN-γ associated with 
other proinflammatory cytokines and characterized the 
TT pole and PB leprosy [73, 76–78].

With results in both the humoral and cellular response, 
this protein will be able to diagnose leprosy without 
much difficulty due to the detection of both ends of its 
spectrum. Other studies using immunoinformatics to 
construct multi-epitope proteins for diagnosis purposes 
had good results in silico, but they lacked sensitivity and 
specificity in ex  vivo [79] or had strong specificity and 
weak sensibility [80].

Conclusion
This novel recombinant multi-epitope protein has a huge 
immunological potential, is stable, and can be lyophilized 
to be used in ELISA plates or even in biosensors, which 
are user-friendly diagnosis tools, facilitating translation 
into human sample tests.

Fig. 3  In silico cloning. The recombinant multi-epitope DNA sequence cloned into the pET28a( +) (Addgene) expression vector, represented in red 
color. The insert was added between the BipI and BamHI restriction sites
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