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Abstract 

DNA damage and genome instability in host cells are introduced by many viruses during their life cycles. Severe acute 
respiratory syndrome coronaviruses (SARS-CoVs) manipulation of DNA damage response (DDR) is an important area 
of research that is still understudied. Elucidation of the direct and indirect interactions between SARS-CoVs and DDR 
not only provides important insights into how the viruses exploit DDR pathways in host cells but also contributes to 
our understanding of their pathogenicity. Here, we present the known interactions of both SARS-CoV and SARS-CoV-2 
with DDR pathways of the host cells, to further understand the consequences of infection on genome integrity. Since 
this area of research is in its early stages, we try to connect the unlinked dots to speculate and propose different con-
sequences on DDR mechanisms. This review provides new research scopes that can be further investigated in vitro 
and in vivo, opening new avenues for the development of anti-SARS-CoV-2 drugs.
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Background
Coronaviruses belong to the Coronaviridae family, order 
Nidovirales. They are characterized by a single-stranded 
positive-sense RNA genome, which contains 26 to 32 
kilobases (kb) [1]. The severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) genome consists of 
12 functional open reading frames (ORFs) with a total 
of ~30,000 nucleotides. Its 5′-terminal ORF1a/b of the 
genome codes for polyproteins 1a/1ab (pp1a/pp1ab), 
which are cleaved by proteases into 16 nonstructural 
proteins (nsps) [2]. The last third of its genome codes 
for four main structural proteins: spike (S), envelope 
(E), nucleocapsid (N), and membrane (M) proteins [3]. 
SARS-CoV-2 shares high homology with SARS-CoV on 
both the genomic and proteomic levels; however, they 
differ in ORF1a/b, ORF7b, ORF8, and S genes’ sequences. 

SARS-CoV-2 additionally bears two proteins, ORF8 and 
ORF10, which are not present in SARS-CoV [4]. Inter-
estingly, the shared proteins of both viruses show similar 
localization patterns in HeLaM cells [5].

Viruses have a limited coding capacity due to their 
small genome size. Therefore, they utilize host cellu-
lar factors and machineries to facilitate their replication 
and generation of progeny. Accordingly, numerous cel-
lular pathways including DNA damage response (DDR) 
are manipulated as a consequence of viral infection [6]. 
DDR comprises complex signaling pathways that protect 
and maintain genomic integrity from endogenous and 
exogenous DNA damaging agents [7]. During the course 
of infection, DDR machineries could be recruited to the 
viral replication centers, or their signaling cascade could 
also be suppressed through various approaches such 
as nucleocytoplasmic shuttling of host factors [8]. Viral 
proteins could also directly interact with DDR pathways, 
affecting the cells’ repair capabilities. Such viral-host 
protein interactions induce genomic instability, which 
are often associated with the viral pathogenesis [9]. A 
recent article has also proposed that during SARS-CoV-2 
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infection, importing the host RNA binding proteins 
(RBPs) into the nucleus is reduced, which possibly results 
in R-loops formation. At a late stage of infection, R-loops 
could accumulate in the cell and overwhelm the DNA 
repair machinery causing DNA damage [10]. Notably, 
DNA damage caused by telomere dysfunction or other 
extracellular damaging agents facilitates SARS-CoV-2 
entry through the upregulation of ACE2 expression [11].

Viruses also generally influence the host cell cycle pro-
gression to safeguard their replication. This affects the 
host DNA replication and repair checkpoints and causes 
cell cycle perturbations. For example, coronavirus infec-
tious bronchitis virus (IBV) induces S and G2/M cell 
cycle arrest [12], and SARS-CoV induces G0/G1 and 
S-phase arrest [12, 13]. Moreover, SARS-CoV-2 infec-
tion leads to S/G2 phase arrest to ensure the abundance 
of nucleotides and facilitate the translocation of essential 
cellular factors for viral replication from the host nucleus 
to the site of replication in the cytoplasm [14].

Although manipulation of DDR by RNA viruses plays 
a substantial role in their pathogenesis, the mechanisms 
are not widely studied in a way similar to DNA viruses 
[9]. This review focuses on the known and proposed 
interactions of SARS-CoV and SARS-CoV-2 with DDR 
pathways to gain insights into the molecular implications 
on the host cell and its genome integrity. We also link 
what has been reported for other viruses to SARS-CoVs 
to propose potential consequences that could be further 
validated in vitro and in vivo.

The interaction between SARS‑CoV and the host DDR
Polymerase δ interacts with SARS‑CoV nsp13
Pol δ plays a central role in genomic replication, espe-
cially in the lagging strand and Okazaki fragments 

maturation. It also has a proofreading activity to increase 
the replication fidelity [15]. The evolutionarily conserved 
p125 subunit, encoded by POLD1 gene, is responsible for 
the essential catalytic 5′–3′ DNA polymerase and 3′–5′ 
exonuclease activities of Pol δ. The polymerase also con-
tains three other smaller subunits coded by the POLD2, 
POLD3, and POLD4 genes. The subunits together with 
the replication factor C and proliferating nuclear cell 
antigen (PCNA) form a polymerase holoenzyme complex 
[16]. Pol δ functions in various repair pathways includ-
ing nucleotide excision repair (NER), mismatch repair 
(MMR), and base excision repair (BER) [17–19].

An interaction between the nonstructural protein 
13 (nsp13) of SARS-CoV and Pol δ was reported, hint-
ing at various possible consequences on the pathways 
that the polymerase is involved in. A yeast two-hybrid 
(Y2H) screen firstly showed an interaction between the 
C-terminus of p125 and nsp13, which was further con-
firmed via glutathione S-transferase (GST) pull-down 
and co-immunoprecipitation assays (Co-IP) (Table  1) 
[12]. nsp13 is a member of the helicase superfamily 1 
that unwinds the double-stranded DNA or RNA in a 
5′ to 3′ direction [20]. It is part of the viral replication 
and transcription complex (RTC), which plays a pivotal 
role in the life cycle of SARS-CoV [21]. Furthermore, 
the RNA 5′-triphosphatase activity of nsp13 proposes 
a vigorous role in the viral RNA 5′ capping [22]. nsp13 
interaction with Pol δ results in a cell cycle arrest in 
the S-phase. Although the exact mechanism is yet 
to be understood, it is proposed that this interaction 
could result in a partial shift of Pol δ from the nucleus 
to the cytoplasm, which can consequently result in 
slow replication of the lagging strands, generation of 
single-stranded DNA (ssDNA) breaks, and eventually 

Table 1  A summary of SARS-CoV proteins that interact with the host DDR

SARS-CoV protein Function Interacting host 
protein

Assays used to 
determine the 
interaction

Protein sequence 
similarity between 
SARS-CoV and SARS-
CoV-2 according to 
[24]

Protein sequence 
similarity between 
SARS-CoV and SARS-
CoV-2 according to [23]

Membrane protein (M 
protein)

Viral assembly PDPK1 Co-IP 96.4% 98.2%

nsp3 Viral replication and 
transcription

RCHY1 Y2H
F3H
MS

86.5% 91.8%

nsp13 Helicase (Viral replica-
tion and transcription)

Polymerase δ Y2H
Pulldown
Co-IP

100.0% 100.0%

nsp14 Guanine N7-methyl-
transferase and 3′–5′ 
exoribonuclease 
activity (viral replication 
fidelity)

DDX1 Co-IP 98.7% 99.1%
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replication cessation. These events would result in the 
recruitment of ataxia telangiectasia and Rad3-related 
(ATR) to phosphorylate checkpoint kinase-1 (CHK1) 
and H2AX to stabilize the arrested forks [12]. The pro-
posed mechanism is likely to exist in SARS-CoV-2, as 
nsp13 shows a 100% sequence similarity in both CoV 
and CoV-2 (Table 1) [23, 24]. In addition, recent reports 
could show an upregulation of ATR expression and 
enhanced phosphorylation of both CHK1 and H2AX in 
African green monkey kidney cells (Vero E6) infected 
with SARS-CoV-2 [25]. Further investigations are nec-
essary to determine the localization of Pol δ, its behav-
ior upon infection, and the consequences on interacting 
proteins represented in Fig. 1A.

RCHY1 association with SARS‑CoV nsp3
nsp3 is a 213 kDa glycosylated transmembrane multi-
domain protein acting together with multiple nsps, 
especially nsp4 and nsp6, to drive the replication and 
transcription processes through a suggested scaffold-
ing function [27]. The SARS-unique domain (SUD) and 
the papain-like protease (PLpro) domain of nsp3 were 
found to interact with and stabilize the “Ring finger and 
CHY zinc finger domain-containing 1 (RCHY1)” human 
protein. The interaction was detected in a Y2H screen 
and confirmed by mass spectrometry (MS) and the  flu-
orescence-3-hybrid (F3H) assay [28]. RCHY1 has an 
E3-dependent ubiquitination activity and contributes to 
proteasomal degradation of several proteins including 
the tumor suppressor p53, to regulate homeostasis of the 
cells. Additionally, RCHY1 monoubiquitinates the trans-
lesion DNA polymerase POLH, inhibiting its DNA dam-
age bypass activity in the S-phase. Since RCHY1 impacts 
different pathways, interacts with key proteins (Fig. 1B), 
and regulates cell cycle progression, significant effects 
are expected upon its interaction with viral proteins [29]. 
The known consequences so far include an increase in 
the RCHY1-mediated p53 degradation [28]. This conse-
quently can affect cell cycle progression and influences 
the activity of numerous DNA-repair pathways [30]. The 
target degradation of p53 also enhances SARS-CoV repli-
cation as p53 acts as a host antiviral factor that enhances 
the immune response and downregulates the viral rep-
lication [28, 31]. Interestingly, some viruses manipu-
late p53 levels in the cell either through upregulating or 
downregulating the expression level according to the 
virus’s life cycle stage and needs [32]. This mechanism is 
expected to be conserved in SARS-CoV-2 as nsp3 shares 
91.8% or 86.5% sequence similarity with that of SARS-
CoV according to [23, 24], respectively (Table  1). This 
suggests the importance of further analysis to understand 
the significance of the interaction on host cells.

PDPK1 interaction with SARS‑CoV M protein
SARS-CoV membrane (M) protein is the most abun-
dant constituent and the major player in the viral 
assembly giving the envelope its shape and size. It is 
considered the mainstay of this process due to its abil-
ity to interact with all the other main structural pro-
teins (E, S, and N proteins) [33, 34]. The C-terminus 
of the M protein was found to interact with phospho-
inositide-dependent kinase-1 (PDPK1/PDK1) through 
the pleckstrin homology (PH) domain (Table  1). This 
interaction was investigated via Co-IP after observing 
the co-localization of both M protein and PDPK1 in the 
cytoplasm using confocal microscopy (Table  1) [35]. 
PDPK1, the serine/threonine kinase, is a master kinase 
that phosphorylates and activates several target pro-
teins including protein kinase B (PKB/Akt1, PKB/Akt2, 
PKB/Akt3). PDPK1 contributes to various pathways: 
cellular response towards DNA damage, insulin signal-
ing, cell growth, proliferation, and survival, besides its 
crucial role in cardiac homeostasis [36]. In addition, it 
interacts with multiple key signaling proteins (Fig. 1C). 
Akt1 mediates double-strand breaks (DSBs) repair 
through the nonhomologous end-joining (NHEJ) path-
way. It directly interacts with the catalytic subunit of 
DNA-dependent protein kinase (DNA-PKcs), and the 
complex is then recruited to the Ku-linked broken ends 
[37]. Akt is also critical for generating interferon (IFN)-
dependent antiviral response [38]. Although the cellu-
lar consequences of the interaction are not well studied, 
the expression of the vesicular stomatitis virus (VSV) 
M protein disrupts Akt phosphorylation [39]. Similarly, 
the increase in the measles virus (MV) pathogenicity is 
owed to Akt inhibition [40]. Altogether, one could spec-
ulate that the Akt activity could be downregulated upon 
SARS-CoV infection. It is also very likely that a similar 
mechanism exists in SARS-CoV-2-infected cells, as the 
reported sequence similarity between SARS-CoV and 
SARS-CoV-2 M proteins is 98.2% or 96.4% according to 
[23, 24], respectively (Table  1). We particularly specu-
late adverse effects on DSB repair due to the compro-
mised Akt DNA repair function.

DDX1 interacts with SARS‑CoV viral nsp14
DEAD-Box helicase 1 (DDX1) is a member of the DEAD-
box proteins, a putative RNA helicases family [41]. This 
helicase was initially discovered in the nucleus, where it 
forms the so-called DDX1 bodies [42]. DDX1 contributes 
to DSBs repair through maintaining the single-stranded 
DNA generated by end resection during homology-
directed repair [43]. In addition, DDX1 was shown to 
have RNase activity on single-stranded RNA (ssRNA) 
and ADP-dependent unwinding activities for both 
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Fig. 1  SARS-CoV protein interactions with the human DDR-associated proteins. A-D) The viral proteins are linked to the interaction partner 
represented in a protein-protein association network retrieved from STRING [26]. Y2H, yeast two-hybrid; Co-IP, co-immunoprecipitation; MS, mass 
spectrometry; F3H, fluorescence-3-hybrid assay
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RNA-DNA and RNA-RNA strands, suggesting a function 
in clearing RNA at the DSB site [42].

Through Co-IP, the host DDX1 was shown to interact 
with nsp14 of SARS-CoV (Fig. 1D) [44]. nps14 is a 3′–5′ 
exoribonuclease and a methyltransferase that plays an 
essential role in the high-fidelity viral replication [45]. 
Interestingly, the DDX1-nsp14 interaction upon IBV 
infection causes DDX1 translocation from the nucleus 
to the cytoplasm, which interferes with its important 
nuclear roles [44]. Since nsp14 shares 99.1% or 98.7% 
sequence similarity with SARS-CoV according to [23, 
24], respectively, comparable consequences could also be 
expected for the recently identified virus (Tables 1 and 2).

The interaction between SARS‑CoV‑2 and the host DDR
Several studies have reported high-confidence physical 
associations between SARS-CoV-2 proteins and human 
cellular proteins using affinity-purification mass spectros-
copy (AP-MS) [24, 46, 47]. In addition, other studies have 
focused on in silico prediction of viral-host interactions via 
bioinformatics analysis [48]. Here, we review the reported 
interactions between SARS-CoV-2 and DDR proteins.

BRD2/4 interact with SARS‑CoV‑2 E protein
Several bromodomain proteins (BRDs) get recruited for 
DSB repair through chromatin-remodeling complexes. 
For example, BRD2 binds to the  acetylated histone 4 

at the DSB site to protect it from histone deacetylases. 
BRD2 then allows for the recruitment of a second bro-
modomain protein, ZMYND8, which promotes the 
acetylation process [49]. Additionally, BRD4 recruits 
condensin II to remodel the acetylated histones, thus 
inhibiting DDR signaling [50].

The SARS-CoV-2 envelope (E) protein forms an ion 
channel, and its C-terminus resembles the N-terminus 
of histone H3. Therefore, similar to H3, it was shown to 
directly interact with bromodomains (BRDs) (Table  2) 
(Fig. 2A) [24, 51]. In addition to the interaction of the 
viral E protein with BRDs, the spike protein of SARS-
CoV-2 results in enhancement of BRD4 expression, 
which is a regulator for senescence mechanism. There-
fore, high levels of reactive oxygen species (ROS), DNA 
damage, and cellular senescence were observed in the 
infected cell lines. Interestingly, treatment of the cells 
with a BRD4 inhibitor reversed the senescent pheno-
type [52].

Several viruses have shown direct interactions with 
host BRDs as well. For example, the human papilloma-
virus (HPV) tethers its genome to the host chromo-
somes through binding of the E2 protein to the host 
BRD4 [53]. Therefore, tackling the consequences of 
SARS-CoV-2 binding to bromodomain proteins can 
lead to promising findings and the discovery of poten-
tial viral inhibitors.

Table 2  A summary of SARS-CoV-2 genes coding for proteins that interact with the host DDR

SARS-CoV-2 protein Function Host DDR proteins Protein sequence similarity 
to SARS-CoV according to 
[24]

Protein 
sequence 
similarity to 
SARS-CoV 
according 
to [23]

Spike protein (S subunit) Host cell entry BRCA1 (in silico) 87.0% 91.5%

BRCA2 (in silico)

p53 (in silico)

BRD4

Envelope protein (E protein) Viral replication and assembly BRD2/4 96.1% 97.4%

ORF8 protein Modulating the host immune response and 
interferon signaling inactivation

DNMT1 45.3% ORF8 a 70.7%

5-LOX ORF8 b 66.7%

ORF9b protein Suppress antiviral innate immunity DCTPP1 84.7% NA

Nucleocapsid protein (N protein) Immune suppression DDX1 94.3% 97.2%

ORF10 protein Inhibits innate immune response CUL2ZYG11B NA ORF9b 52.4%

nsp1/leader protein Suppress cellular protein synthesis and 
potent inhibitor of host gene expression 
and antiviral response

Polymerase α 91.1% 93.9%

nsp5/3C-like proteinase Processing of viral polyprotein HDAC2 98.7% 99.7%

nsp14 Guanine N7-methyltransferase 3′–5′ 
exoribonuclease (evasion of host immune 
response)

IMPDH2 98.7% 99.1%
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Fig. 2  SARS-CoV-2 protein interactions with BRD2, BRD4, DNMT1, 5-LOX, DCTPP1, and CUL2ZYG11B. A-D) The viral proteins are linked to the 
interaction partner represented in a protein-protein association network retrieved from STRING [26]. MS, mass spectrometry
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DNMT1 interacts with SARS‑CoV‑2 ORF8
DNA methyltransferase 1 (DNMT1) is an essential player 
in the process of DNA methylation. Knocking down 
DNMT1 in telomerase reverse transcriptase (hTERT)-
immortalized normal human fibroblasts caused an indi-
rect defect in the MMR pathway, as a consequence of 
decreased levels of MutLα and MutSα complexes [54].

SARS-CoV-2 ORF8 protein interacts with DNMT1 
(Table 2) (Fig. 2B) [24]. In addition, ORF8 is potentially 
proposed to hinder host immunity as it interferes with 
type-I interferon (IFN-I) signaling [55]. Moreover, ORF8 
downregulates the major histocompatibility complex I 
(MHC-I) [56].

It was shown that hepatitis C virus (HCV) exploits both 
DNMT1 and DNMT3B to propagate since the HCV sub-
genomic replication is inhibited via the downregulation 
of DNMT1 or DNMT3B [57]. Hence, we hypothesize 
that SARS-CoV-2 ORF8 and DNMT1 interaction might 
affect the human DNA repair machinery and contribute 
to viral pathogenicity. Further studies are also needed to 
determine if DNMT1 inhibitors can affect SARS-CoV-2 
pathogenicity and be used as a potential therapy.

5‑LOX interacts with SARS‑CoV‑2 ORF8
5-Lipooxygenase (5-LOX) is important for leukotrienes 
biosynthesis. Moreover, it regulates the activity of the 
tumor suppressor p53, which is involved in DSBs repair. 
p53 also regulates its ∆133p53 isoform that participates 
in DSB repair, via upregulating the transcription of key 
repair genes; RAD51, LIG4, and RAD52 [58].

SARS-CoV-2 was shown to interact with the host 
5-LOX via MS analysis (Table  2) (Fig.  2B) [24], which 
opens questions regarding the effect of the interaction 
on DDR and the viral virulence. Interestingly, high levels 
of 5-LOX were detected during Kaposi’s sarcoma-asso-
ciated herpes virus (KSHV) infection. The interaction 
contributes to viral pathogenicity, and the inhibition of 
5-LOX expression negatively affects the KSHV latency 
[59]. In the same manner, SARS-CoV-2 interaction with 
5-LOX may contribute to increasing the SARS-CoV-2 
pathogenicity and affect the human DDR.

DCTPP1 interacts with SARS‑CoV‑2 ORF9b
ORF9b, an alternative open reading frame within the N 
gene of SARS-CoV-2, encodes one of the most important 
accessory proteins involved in impeding host immune 
response by acting on the mitochondria. It works on 
interferon deactivation via targeting the translocase of 
the mitochondrial outer membrane 70 (TOM70), which 
facilitates its evasion [60]. Interestingly, the ORF9b of 
SARS-CoV-2 interacts with the human dCTP pyrophos-
phatase 1 (DCTPP1) (Table  2) (Fig.  2C) [24]. DCTPP1 
regulates the deoxynucleotide (dNTP) pool homeostasis 

with a higher affinity towards deoxycytidine triphosphate 
(dCTP) and its analogs. Furthermore, DCTPP1 preserves 
the nuclear and mitochondrial genomic integrity through 
protecting the DNA and RNA from genotoxic nucleo-
tide analogs misincorporation [61, 62]. We propose that 
the host’s mitochondrial DNA (mtDNA) can suffer from 
damage since ORF9b localized to the mitochondria in 
both SARS-CoV- and SARS-CoV-2-infected cells [5].

CUL2ZYG11B complex interacts with the ORF10 
of SARS‑CoV‑2
In SARS-CoV-2, the ORF10 protein inhibits the type-I 
interferons (IFN-I) signaling pathway and induces the 
breaking down of the mitochondrial antiviral signaling 
protein (MAVS). Moreover, ORF10 induces mitophagy 
through interacting with the mitophagy receptor Nip3-
like protein X (NIX) in the mitochondria. Consequently, 
this inhibits the antiviral innate immune response [63]. 
ORF10 interacts with multiple human proteins which 
play a vital role in different cellular pathways [24]. Nota-
bly, it interacts with the Cullin 2 RING E3 ligase complex 
bearing the substrate adapter ZYG11B (CUL2ZYG11B) 
(Table  2) (Fig.  2D) [24]. CUL2 is important for the 
regulation of protein degradation. Therefore, silenc-
ing it significantly impairs S-phase entry and delays the 
recruitment of RAD51 to repair DNA via homologous 
recombination (HR). Even though the consequences of 
the ORF10-CUL2ZYG11B interaction are still not clear, the 
ubiquitination pathways are usually hijacked by viruses 
for replication and pathogenesis purposes [64, 65]. For 
instance, the adenoviruses, human immunodeficiency 
virus, type 1 (HIV-1), HPV type 16, and Epstein-Barr 
virus (EBV) exploit ubiquitin ligases to target cellular 
proteins for degradation and help in viral replication 
[66, 67]. Particularly, adenovirus 12 was shown to uti-
lize a CUL2/RBX1/elongin C-containing ubiquitin ligase 
to degrade p53 during infection and induce the ATR 
activator protein topoisomerase-IIβ-binding protein 1 
(TOPBP1) degradation [68]. The degradation of TOPBP1 
compromises DDR, as it binds SSBs, DSBs, and DNA 
nicks and acts as a sensor for replication stress [69, 70]. 
Hence, SARS-CoV-2 interaction with CUL2 might aid in 
viral replication and manipulation of the DDR.

Polymerase α complex interacts with SARS‑CoV‑2 nsp1
nsp1 plays an important role in regulation of viral rep-
lication and translation. It increases the SARS-CoV-2 
infectivity by downregulating the host antiviral path-
ways, specifically the interferon pathway components. 
This occurs through stalling mRNA translation by block-
ing the ribosomal 40S subunit, reducing mRNA transla-
tion [71]. SARS-CoV-2 nsp1 was shown to interact with 
all four subunits of the DNA polymerase α complex: 
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POLA1, POLA2, PRIM1, and PRIM2 (Table 2) (Fig. 3A) 
[24]. Since the polymerase α complex is essential for ini-
tiating DNA replication as well as NHEJ [72], we suggest 
that this interaction may cause replication stress along 
with defects in NHEJ.

HDAC2 interacts with SARS‑CoV‑2 nsp5
Histone deacetylases 1/2 (HDAC1/2) localize at the DNA 
replication site and interact with the PCNA to ensure 
DNA replication efficiency [73]. During DNA damage, 
HDAC1/2 get recruited to promote hypo-acetylation of 
H3K56 at the DNA damage sites. In addition, they pro-
mote NHEJ to repair the DNA damage [74]. Addition-
ally, HDAC regulates the ATM and p53 expression and 
activities affecting the DNA damage signaling [75]. A 
high-confidence interaction between HDAC2 and SARS-
CoV-2 nsp5 was identified (Table 2) (Fig. 3B) [24]. nsp5 
is a protease that cleaves pp1a and pp1ab polypeptides 
at eleven positions to release mature and intermediate 
nonstructural proteins crucial for viral assembly [76]. A 
cleavage site between the nuclear localization sequence 
of HDAC2 and its catalytic domain was predicted to 
be processed by nsp5; thus, the viral interaction with 
HDAC2 is proposed to prevent the nuclear localization 
of HDAC and the subsequent activation of the interferon 
response pathway [24]. Overall, the interaction of SARS-
CoV-2 with HDAC2 could have negative consequences 
on the host genome integrity.

IMPDH2 interacts with SARS‑CoV‑2 nsp14
Inosine-5′-monophosphate dehydrogenase (IMPDH) 
isoforms, IMPDH1 and IMPDH2, play an important role 
in cell growth regulation by catalyzing the conversion 
of inosine 5′-phosphate (IMP) into xanthosine 5′-phos-
phate (XMP) in the de novo synthesis pathway of gua-
nine nucleotides [77]. It was found that the SARS-CoV-2 
nsp14 interacts with IMPDH2, proposing a possible 
alteration of its function (Table  2) (Fig.  3C) [24]. nsp14 
is required for SARS-CoV-2 replication fidelity and mes-
senger RNA (mRNA) capping, contributing to the viral 
pathogenicity and life cycle through the control of the 
innate immune response and the viral genome recombi-
nation [78]. The prolonged inhibition of IMPDH causes 
replication stress, DNA damage, and genomic instabil-
ity as a result of nucleotide pool imbalance [77]. Subse-
quently, we propose that nsp14 protein interaction with 
IMPDH can result in severe cellular defects.

BRCA1, BRCA2, and p53 interact with the S2 subunit 
of the S protein
The spike (S) glycoprotein of SARS-CoV-2 undergoes 
proteolytic cleavage at the S1/S2 site by host furin or 
furin-like proteases [79]. This cleavage results in the sur-
face subunit S1, responsible for the virus attachment to 
the host cell surface receptor, and the transmembrane 
subunit S2, which derives the fusion of the viral and host 
membranes and allows the release of the viral genome 
into host cells [80]. The interaction of the S2 subunit with 
p53, BRCA1, and BRCA2 was predicted in silico (Table 2) 
(Fig. 3D) [48]. BRCA1, BRCA2, and p53 are well-known 
tumor suppressor proteins. BRCA proteins participate 
in HR to repair DNA DSBs. BRCA1 functions upstream 
of BRCA2 in response to DNA damage, while BRCA2 
plays a main role in the regulation of RAD51 activity in 
HR machinery [81]. BRCA1 was previously associated 
with Tat-dependent transcription enhancement of the 
HIV-1 infection [82]. Moreover, numerous functional 
activities of BRCA1 are antagonized by interacting with 
oncogenic HPV E6 and E7 proteins [83]. Further studies 
are required to confirm the interaction of the proteins 
in vitro and also to understand the extent of DNA dam-
age caused by this interaction if confirmed.

DDX1 interacts with the SARS‑CoV‑2 viral N protein
Similar to SARS-CoV, SARS-CoV-2 interacts with the host 
DDX1 but through the viral N-protein (Table 2) (Fig. 3E). 
As previously mentioned (“DDX1 interacts with SARS-CoV 
viral nsp14”), DDX1 contributes to DSBs repair [43]. The N 
protein-DDX1 interaction was shown to be important for 
viral replication [84]. Further analysis may reveal significant 
cellular changes as a result of this interaction.

Conclusions
Despite the global interest in SARS-CoV-2 research, 
most of the studies emphasize on the structural aspects 
of the viral-host interactions, with a limited focus on 
the molecular consequences on the host genome. Sev-
eral SARS-CoV-2 proteins were reported to interact with 
host players associated with DDR, which can negatively 
impact their contribution to the repair of DNA dam-
age (Fig.  4). The integration of SARS-CoV-2 reverse-
transcribed sequences into the infected human genome 
was also reported to express chimeric virus-host RNAs, 
which affects host genome integrity [85]. Here, we 
reviewed the SARS-CoVs-host DDR interactions and 

(See figure on next page.)
Fig. 3  SARS-CoV-2 protein interactions with the DNA polymerase α complex, HDAC2, IMPDH2, BRCA1, BRCA2, TP53, and DDX1. A, B, C, E) The viral 
proteins are linked to the interaction partner represented in a protein-protein association network retrieved from STRING [26]. D) Viral spike protein 
predicted interaction with BRCA1, BRCA2, and TP53 networks. The networks of BRCA1 and BRCA2 were retrieved from STRING and merged [26]. MS, 
mass spectrometry; IP, immunoprecipitation
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Fig. 3  (See legend on previous page.)



Page 10 of 13Mekawy et al. Journal of Genetic Engineering and Biotechnology          (2022) 20:104 

proposed possible effects on genome stability and DNA 
repair (Fig.  4). We also compared the sequence similar-
ity of homologs for both viruses and reported the DDR 
manipulations induced by other viruses to get more 
insights into the current virus behind the pandemic from 
previously discovered ones.

The DDR-targeting drugs are showing a great prom-
ise in combating the virus. For example, berzosertib, an 
inhibitor for the major DNA damage sensor ATR kinase, 
shows potential anti-SARS-CoV-2 activity in multiple 
cell types in addition to its ability to inhibit SARS-CoV 
replication [86]. Mapping more interactions that influ-
ence the host DDR is important for developing antiviral 
drugs that can target a broad range of emerging strains. 
As discussed, the majority of the reported interactions 
for SARS-CoV-2 so far were observed through high-
throughput methods or in silico simulations. Therefore, 

future studies should invest in small-scale verification of 
interactions to confirm the potential use of the reported 
host DDR proteins as drug targets [46, 87]. Further vali-
dation of the targets using in  vivo models will also be 
necessary to confirm the output obtained from experi-
ments on cell lines in a multicellular context. Overall, this 
area of research should expand and develop to enable the 
discovery of novel antiviral drugs that treat SARS-CoV-2 
and other viruses of similar mechanisms that can emerge 
in the future.
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