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Abstract 

COVID-19 has become a pandemic, and any new drug for treating the disease could save millions of lives. Several 
drugs already in use for other diseases and medical conditions are repurposed for treating COVID-19 in an attempt to 
find treatment for the disease without spending research time on ADME TOX and other studies on side effects. In this 
exercise, the drugs repurposed are from antiviral, antibiotics, antiviral for HIV and HCV, anti-cancer, natural medicines, 
etc. Possible repurposing anti-diabetic GPR-120 agonists used as for SAR-CoV-2 is attempted in the study by carry-
ing out docking of 68 GPR-120 agonists. Ten of these compounds were found to have docking scores −8.3 to −8.0, 
and the best docking score was observed for an arylsulfonamide and a biarylpropanoic acid belonging to GPR120 
agonists previously evaluated for the treatment of type II diabetes. These GPR120 agonists could serve as start point 
for novel inhibitors for the discovery of drugs to treat COVID-19.
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Background
After suffering from a devastating spell of COVID-19, the 
world is slowly limping back to normalcy. This is one of 
the pandemics that has a better public awareness owing 
to the Internet and social media. As per the data reported 
to WHO Globally, as of 14 October 2021, there have 
been 239,007,759 confirmed cases of COVID-19, includ-
ing 4,871,841 deaths. As of 13 October 2021, a total of 
6,471,051,151 vaccine doses have been administered 
(https://​covid​19.​who.​int/ accessed on October 15, 2021). 
The world is undergoing the largest vaccination program 
to guard the people from any further spells of the deadly 
virus.

In addition to the vaccines, the pharmaceutical com-
panies and the scientists in various organization are try-
ing to develop drugs to combat the SARS CoV-2. There 
are several targets that could be explored to develop new 
drugs for COVID-19 [1]. The therapeutic targets include 

both structural and non-structural proteins [2]. Some 
of the targets considered to develop inhibitors are as 
follows:

•	 Spike protein (S-protein) [3–5]
•	 Angiotensin-converting enzyme-2 (ACE-2) [6, 7]
•	 Human proteases: Transmembrane protease, serine 

2 (TMPRSS2) [7, 8], Furin [9], Papain like protease-2 
(PLpro) [10–12] 3-chymotrypsin like protease 
(3-CLpro) or the main protease MPro [13]

•	 Viral proteases (RNA-dependent RNA-polymerase 
(RdRp) [14]

One of the steps taken by the scientific community to 
combat the pandemic was to repurpose drugs already 
known and in use. This provides a shortcut and reduces 
the considerable amount of time spent on ADME Tox 
studies and the burden on assessing the new drug 
molecule’s therapeutic efficacy, side effects, and risks. 
Several small molecules were considered [15]. The 
repurposed drugs are usually broad-spectrum antivi-
rals that fall under the two therapeutic classes namely, 
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protease inhibitor and nucleosides. Among the repur-
posed drugs favipiravir, remdesivir, molnupiravir, 
galidesirvir, sobosbivir, and azivudine are examples of 
nucleosides while boceprevir, narlaprevir, simeprevir, 
and calpain inhibitors belong to protease inhibitors.

The race in finding an antiviral for COVID-19 was 
given momentum by computer-aided drug design 
approach, especially with the aid of docking software 
such as Auto Dock and Schrödinger. Of the several tar-
gets mentioned above, the main protease (MPro) has 
been the most explored for the development of inhibi-
tors. One of the main reasons for exploring the MPro 
inhibitors is its important role played in the in the 
replication and transcription of SARS CoV-2 [16]. The 
main protease (MPro) is one of the proteins encoded 
in SARS-CoV-2 genome and is a dimer of cystine pro-
tease. This is called the 3-chymotrypsin-like protease 
(3-CLpro). MPro presents a highly conserved active 
site in several coronaviruses, such as SARS-CoV and 
MERS-CoV. MPro plays an important role in the cleav-
age of precursor polyproteins translated from viral 
RNA, and no other human protease does have a simi-
lar cleavage specificity. This makes MPro an attractive 
target for developing inhibitors, and the inhibitor may 
thus be non-toxic.

The development of inhibitors targeting the main 
protease appears to have not left any stone unturned 
and these repurposed molecules may be grouped into 
(1) inhibitors of other CoV, (2) antiviral therapeutics of 
human immunodeficiency virus (HIV), (3) anti-viral that 
are being used in hepatitis C virus (HCV), (4) antima-
larial and other antivirals for influenza, (5) anti-bacterial, 
(6) anti-cancer drugs, (7) Traditional Chinese medicines, 
and (8) chemicals in traditional spices and other natural 
compounds from marine origin.

Based on the action of the main protease, Yang et  al. 
has designed several inhibitors in 2005. The authors 
found molecule N3 (number assigned by Yang et al. [17]) 
(see Fig. 1) as the most potent inhibitor of CoV. This mol-
ecule was studied by Jin et al. [13] for SARS CoV-2 and 
from the results of docking study the authors proposed 
that N3 binds in 3CLPro binding pockets in an irreversible 
manner, and they thus exhibited good inhibitory potency. 
The 3CLPro complex withN3 molecule was used to iden-
tify new inhibitors and one such molecule is ebselen [13, 
18]. Ebselen, a drug used for the treatment of stroke  con-
taining a selenium atom is repurposed for SARS-CoV-2. 
Crystal structure of MPro without any ligand bound to 
the protein was reported by Zhang et al. [19] and Zhang 
et al. [20] studied the binding affinity of alpha-ketamide 
to 3CLPro and identified three binding pockets in the pro-
tein. By varying the four substructures (marked as A, B, 

C, & D in Fig. 1), they obtained the best fitting into the 
protein pockets from the inhibitory potency (Fig 1).

Calligari et  al. [21] investigated thirteen proteinase 
inhibitors that are used as antiviral for human immuno-
deficiency virus (HIV) and hepatitis C virus (HCV). The 
ten anti-HIV drugs are saquinavir, indinavir, tipranavir, 
ritonavir, lopinavir, atazanavir, nelfinavir, amprenavir, 
darunavir, and fosamprenavir while the three anti-HCV 
aresimeprevir, faldaprevir, and asunaprevir. Among these 
simeprevir was found to have the highest docking score. 
Lopinavir/ritonavir, coformulation is sold under the 
brand name Kaletra as an antiretroviral medication for 
the treatment and prevention of HIV/AIDS. Repurpos-
ing of Kaletra for SARS CoV-2 was found to be effective. 
Nutho et al. [22] could explain the inhibitory efficacy of 
Kaletra based on the docking studies of lopinavir and 
ritonavir with 3CLPro. Chang et  al. [23] showed that 
indinavir binds with 3CLPro stronger than lopinavir and 
ritonavir and Calligari et  al. [21] had also inferred this 
in their study. Nelfinavir was identified to be a potential 
inhibitor for CoV-2 from a docking that used 1903 can-
didates [24]. These authors went on to determine the 
inhibitory potency of nelfinavir [25]. Atazanavir the HIV 
antiviral was found to be a potential inhibitor of 3CLPro 
[26], and its ability to inhibit SAR CoV-2 Vero cells was 
studied by Fintelmen_Rodrigues et al. [27].

In addition to the three HCV drugs mentioned above, 
ledipasvir and velpatsavir were reported by Chen in 2020 
[28]. Li et al. [29] ended up with four molecules namely, 
prulifloxacin, bictegravir, nelfinavir, and tegobuvir by 
high through put screening of 8000 clinical drug librar-
ies based on the binding affinity with MPro. Khan et  al. 
[30] screened 123 antiviral drugs to identify inhibitors of 
3CLPro as well as 2′-O-MTase (2′-O-ribose methyltrans-
ferase). Paritaprevir and Raltegravir were found to have 
high binding affinity for 3CLPro.

Talluri [31] carried out virtual screening of several clin-
ically approved antiviral and the crystal structure of MPro 
(PDB if 6LU7) and found saquinavir and beclabuvir as the 
best protease inhibitor candidate SARS CoV-2 among the 
compounds studied by them. Other anti-viral drugs that 
had been tested for repurposing by molecular docking 
and virtual screening include oseltamivir [32] and zan-
amivir [33].

Some of the antibiotics that have been identified to 
be effective based on computer-aided virtual screening 
are the quinoline antibiotic prulifloxacin [29], tetracy-
cline antibiotics eravacycline [34], and the polypeptide 
antibiotic colistin [35]. Non-steroidal anti-inflamma-
tory drugs (NSAID) were also repurposed as potential 
inhibitors of MPro [36] by docking studies. In a similar 
study on NSAIDs, Gimeno et  al. [37] identified Peram-
panel, Carprofen, Celecoxib, Alprazolam, Trovafloxacin, 



Page 3 of 23Mohan et al. Journal of Genetic Engineering and Biotechnology          (2022) 20:108 	

Sarafloxacin, and ethyl biscoumacetate as possible inhibi-
tors of MPro by docking studies. The two compounds 
namely, Carprofen, a NSAID no longer use in human 
medicine but used for veterinary purpose, and Celecoxib 
another NSAID and a COX-2 inhibitor, were subjected 
to in vitro testing at 50 μM, and they showed 3.97% and 
11.90% MPro inhibition, respectively.

Dipyridamole (brand name Persantine) is a platelet 
inhibitor and is used to prevent blood clots after heart 
surgery was repurposed for CoV-2 by Liu et al. [38] and 
the inhibitory potency (IC50) was studied targeting 

3CLPro. Odhar et al. [39] studied the drug molecules from 
US-FDA-approved drugs library from ZINC 5 database, 
and from their docking on to the MPro (PDB id 6LU7), 
they identified ten hits that included drug that are used 
for cancer, epilepsy, and insomnia. The top ten hits based 
on the docking score are Perampanel (epilepsy), conivap-
tan (hyponatremia), sonidegib (basal-cell carcinoma), 
azelastine (allergy), idelalisib (leukemia and lymphoma), 
suvorexant (insomnia) olaparib (ovarian, breast, and pan-
creatic cancers), ponatinib (leukemia), loxapine (schizo-
phrenia), and tolvaptan (hyponatremia). Wang et al. [34] 

Fig. 1  Structure of N3, α-ketamide with sub-structures marked
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in the computational drug repurposing study identified 
carfilzomib (antineoplastic agent), valrubicin (chemo-
therapy drug), and elbasvir (antiviral for HCV) as inhibi-
tors based on the docking with MPro, in addition to the 
antibiotic eravacycline.

Traditional Chinese medicine (TCM) and traditional 
Indian medicines that fall under Ayurveda and Sidha 
were used as immune boosters to fight against COVID-
19. Zhang et  al. [19, 20] carried out docking studies 
of about 100 constituents of the Lung-toxin Dispel-
ling Formula No. 1 (LDFN1) of TCM and found 22 of 
these chemicals are inhibitors of 3CLPro. Of the several 
chemicals, baicalin and baicalein were found to have 
antiviral activities against 3CLPro [40] with EC50 values 
of 10.27 μM and 1.69 μM, respectively. Liu et  al. [41] 
studied the inhibitory activity of the ethanol extract of 
the herbal plant Scutellaria baicalensis and its major 
component, baicalein. They found that the plant extract 
and the constituent baicalein inhibited SARS-CoV-2 
3CLpro activity in  vitro with IC50 of 8.52 mg/mL and 
0.39 mM, respectively. The replication of SARS-CoV-2 
in Vero cells were inhibited with EC50s of 0.74 mg/
ml and 2.9 mM, respectively. In their study on screen-
ing several natural compounds that are constituents of 
TCM,  Zhang et al. [19] and Zhang et al. [20] identified 
betulinic acid, coumaroyltyramine, cryptotanshinone, 
desmethoxyreserpine, dihomo-γ-linolenic acid, kaemp-
ferol, lignan, N-cis-feruloyltyramine, quercetin, sugiol, 
and tanshinoneiia to inhibit 3CLPro. Cherrak et al. [42] 
studied several glycosylated flavonoids by docking them 
on the MPro (6LU7) and identified quercetin-3-O-rham-
noside to have the highest binding affinity. Myricetin 
3-rtinoside and rutin were also identified as potential 
inhibitors of 3CLPro, and the binding affinities of these 
three compounds were greater than that of N3 with 
3CLPro. Shivanika et  al. [43] carried out docking stud-
ies of several natural products that have been used as 
antiviral on to 6LU7 the 3CLPro protein structure and 
found theaflavin-3-3’-digallate, rutin, hypericin, robust-
aflavone, and (-)-solenolide as the compounds with 
highest binding energy. It might be noted that identifi-
cation of rutin as a potential inhibitor is independently 
confirmed by two groups. Bhaliya and Shah [44] car-
ried out docking studies of mono-carbonyl analogs of 
curcumin with 3CLPro and found one of the curcumin 
analogs was found to have potential to be used as an 
inhibitor. Joshi et  al. [45] screened a library of ∼7100 
molecules that comprises of flavonoids, glucosinolates, 
anti-tussive, anti-influenza, anti-viral, terpenes, ter-
penoids, alkaloids, and other compounds predicted as 
potential therapeutic candidates against MPro. Mol-
ecules such as δ-viniferin, myricitrin, taiwanhomo-
flavone A, lactucopicrin 15-oxalate, nympholide A, 

afzelin, biorobin, hesperidin, and phyllaemblicin B were 
found to bind strongly with MPro and hence suggested 
as potential inhibitors. Andrographolide a natural com-
pound from Andrographis paniculata was studied [46] 
via docking on to MPro, and the in silico studies on 
ADME and toxicity prediction were also carried out. 
The molecule was predicted to have good solubility. 
Ramaiah et al. [47] studied the binding of natural mole-
cules that are present in Indian spices and curry against 
MPro (6LU7). A similar study identified [48] carnosol 
a natural molecule as an inhibitor by docking studies 
using the protein structure PDBID: 6Y84, MPro. Bioac-
tive compounds in medicinal plants were screened as 
potential MPro inhibitors [49] and natural compounds 
such as kaempferol, quercetin, luteolin-7-glucoside, 
demethoxycurcumin, naringenin, apigenin-7-glucoside, 
oleuropein, curcumin, catechin, and epicatechin-gallate 
as potential molecules for further exploration.

According to the latest report of the pharmaceutical 
company Merck, molnupiravir pills are able to reduce the 
hospitalization and deaths of people affected by COVID-
19 [50]. They reported the results of Phase 2a trial (Clini​
calTr​ials.​govNCT04​405570) in which safety, tolerability, 
and antiviral efficacy of molnupiravir in the treatment of 
COVID-19. Merck applied on October 11, 2021, for US-
FDA emergency use authorization for the molnupiravir 
based-oral antiviral pill for COVID-19. This will not stop 
the hunt for new inhibitors, and the search for new mol-
ecules will continue.

In one of the studies of repurposing drugs [51], vir-
tually screened 1615 FDA approved drugs by docking 
each of them on to MPro and then refined the selection 
by employing molecular dynamics to identify nine com-
pounds. The nine drugs selected as potential inhibitors 
vary from vasoconstrictor to microscopy dye. The poten-
tial inhibitors identified and their original use are:

1.	 Dihydroergotamine: vasoconstrictor
2.	 Midostaurin: treatment of acute myeloid leukemia
3.	 Ziprasidone: antipsychotic
4.	 Etoposide: antineoplastic
5.	 Apixaban: used to reduce the risk of stroke and blood 

clots
6.	 Fluorescein: a dye used in microscopy
7.	 Tadalafil: used to treat erectile dysfunction (ED), 

benign prostatic hyperplasia (BPH), and pulmonary 
arterial hypertension)

8.	 Rolapitant: used along with an antiemetic (anti-vom-
iting) agent in adults for the prevention of delayed 
nausea and vomiting associated with initial and 
repeat courses of emetogenic cancer chemotherapy

9.	 Palbociclib: used to treat HR-positive and HER2-neg-
ative breast cancer

http://clinicaltrials.gov/
http://clinicaltrials.gov/
https://www.medrxiv.org/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT04405570&atom=%2Fmedrxiv%2Fearly%2F2021%2F06%2F17%2F2021.06.17.21258639.atom
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The above discussion indicates that repurposing of 
drugs belonging to different classes have been evaluated 
for CoV-2. Human GPR120 is a transmembrane pro-
tein, characterized by the interactions with the endog-
enous ligand linoleic acid and docosahexaenoic acid. 
Apart from the key role played by GPR 120 in diabe-
tes, it is also involved in many other disease conditions, 

including cancer, inflammation, and central nervous sys-
tem (CNS) disorders. GPR 120 presents itself in many 
metabolic pathways, and its pivotal role in controling 
obesity and diabetes is worth mentioning. Using gene 
knockdown studies, GPR120 has been shown to induce 
chemoresistance in breast cancer treatment with epiru-
bicin and cisplatin-highlighting the relevance of GPR 120 

a b

dc

Fig. 2  a Flowchart for docking procedure to obtain binding score for docking a ligand. b Flowchart for to view and save the protein-ligand 
complex. c Structural similarity and drug like properties of docked GPR 120 agonists versus Rolapitant and Fluvastatin.dToxicity prediction for 
compound34 (ProTox-​II -​ Predi​ction​ of TOXic​ity of chemi​cals (chari​te.​de))

https://tox-new.charite.de/protox_II/index.php?site=compound_search_similarity
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antagonists for chemotherapy [52]. Further, Toelzer et al. 
recently identified a linoleic acid binding pocket in the 
SARS-CoV-2 spike protein which prompted us to look 
for alternate drugs for binding with COVID-19 MPro. 
The present study reports the results of docking studies 
carried out using G-protein-coupled receptor (GPR) ago-
nists against the MPro to identify any potential inhibitor 
of SARS CoV-2.

Methods
Auto Dock 4.2.6 was used to perform docking study. 
Chemical structures were drawn using Chemoffice 
2002.  Three-dimensional structures of proteins were 
downloaded from protein data bank (PDB id: 6LU7) 
(https://​www.​rcsb.​org/).

Protein preparation
The protein was prepared for docking process according 
to the standard protein preparation procedure integrated 
in Accelry’s Discovery Studio 4 which is shown in the 
flow chart (Fig. 2a).

Ligand 2D structures were drawn using ChemDraw 
Ultra 8.0 (ChemOffice 2002) and converted into 3D 
structure using chem3D Ultra 8.0. The 68 molecules were 
used as ligands, and each one of them was docked on to 
the crystal structure of MPro with PDB id 6LU7. The pro-
cedure for ligand preparation and docking is given as a 
flow chart in Fig.2a, b. Docking scores were obtained to 
understand any inhibitory potential of the 68 GPR120 
agonists.

Zhang and Macielag [53] discussed the patented GPR 
120 agonists for the treatment of diabetes. They reviewed 
the therapeutic patents of ten different classes of com-
pounds that amounted to 68 therapeutic molecules. The 
68 GPR-120 agonists collected by the authors from differ-
ent patents and journals are grouped into ten classes. The 
ten classes and the number assigned in this paper along 
with abbreviation are given below:

	 1.	 Natural GPR 120 agonists and early synthetic GPR 
120 agonists (1–9)

	 2.	 Bi-aryl-based phenyl propionic acid derivatives as 
GPR 120 agonists (BiAr-PPA 10–14)

	 3.	 Cycloalkenyl and heterocycloalkenyl-based phe-
nyl propionic acid derivatives (CycA_Hcyc--PPA 
15–23)

	 4.	 Dihydrobenzofuran derivatives (Metabolex) and 
benzo-fused heterocyclic derivatives (Metabolex 
24 and Jansesen 25–27)

	 5.	 Chemcial scaffolds claimed by Merck (Merck 
28–35)

	 6.	 Various carboxylic acid scaffolds claimed by Bris-
tol-Meyers Squibb (BMS 36–45)

	 7.	 Patented structures by Piramal Enterprises Limited 
(PEL 46–52

	 8.	 Other carboxylic acid-based GPR 120 agonists 
(Calden (53–54; LG 55–59; Ajinamoto 60; DOMPE 
61–62)

	 9.	 Non-acid-containing structures claimed by 
AXXAM (AXXAM 63-65)

	10.	 GPR120 agonists/antagonists in the peer-reviewed 
journals (GSK 65; U of B 66; GSK 67; Ch Pharm U 
68).

Different classes of these 68 molecules are patented 
as GPR120 agonists to treat type-2 diabetes by various 
pharmaceutical companies namely, Janssen Pharmaceu-
tica NV, Merck Sharp & Dohme Corp., Bristol Myers 
Squibb, Piramal Enterprises Limited, Caldan Therapeu-
tics Limited, LG Life Sciences Ltd., Ajinomoto Company, 
Accepted Manuscript Inc., Dompe’ Farmaceutici S.P.A., 
and AXXAM S. P. A. Structures of these compounds with 
their abbreviated id number used in this paper are given 
in Table 1.

Results and discussions
Binding scores for each of the 68 ligands are listed in 
Table  1 along with their molecular structures. Docking 
images each of the ligands in MPro (PDB ID 6LU7) are 
given in the Supplementary material while the ligands 
with best scores (≥ −8.0) are given in Fig.  3. The type 
of docking interaction for these ligands are presented in 
Table 2. Some of the ligands are having a docking score 
of ≥ −8.0. The lowest value is −8.3 for the molecule with 
id GSK (65). This is a sulfonamide patented by GlaxoS-
mithKline as a selective antagonist against free fatty acid 
4 (FFA4/GPR120) [54, 55] and to be used with the ago-
nist GSK 137647A which is also a sulfonamide (id in this 
paper GSK137647A(8)). The compound with binding 
score −8.2 is a biaryl-based phenylpropanoic acid (13)) 
[56] patented by Janssen Pharmaceutica [57]. The com-
pound 17 with binding score −8.0 is also phenylpropa-
noic acid derivative namely, cyclohexenyl-based phenyl 
propionic acid [58]. Three of the other compounds 47, 48, 
and 52, with binding score −8.0 are patented by Piramal 
Enterprises Limited as GPR120 agonists [47, 59–61] and 
phenylbutanoic acid with biarylsubstituent wherein one 
of the aryl groups is a heterocyclic or fused heterocyclic 
system. Cyclopropane carboxylic acid derivative with a 
phnoxybiphenyl substituent 40 is also found to have a 
binding score 8.0. This molecule is patented by Bristol-
Meyers Squibb Company [62] as GPR120 modulators 
useful for treatment of diabetes and related diseases.

Based on the binding score of the top 10 compounds 
investigated here, their role in blocking the binding 
site through Glu 166 and Cys 145 could be considered 

https://www.rcsb.org/


Page 7 of 23Mohan et al. Journal of Genetic Engineering and Biotechnology          (2022) 20:108 	

relevant for their potential role as novel ligands for 
Sars-COVID-19 virus protein. The observation that 
Remdesivir, Nelfinavir, and other antiviral compounds 
show similar interaction support our inference [63–65]. 
Additional support for such a claim has been found in 
the paper describing docking study of metocurine with 

M-Pro 6LUZ that indicate the drug occupies the binding 
site [66]. The important residues observed in the dock-
ing study of our GPR120 agonists as well as the above 
molecules studied by others including that of chlorquine 
[61]  highlight the role of NH, COOH groups in mani-
festing pi bond formation with Glu 166 and aromatic pi 

Table 1  GPR120 agonists, ligand ids (used in this paper), docking scores, and molecular structures
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Table 1  (continued)
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Table 1  (continued)
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Table 1  (continued)
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Table 1  (continued)
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Table 1  (continued)
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Table 1  (continued)
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Table 1  (continued)
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interaction with Cys 145, respectively. Dock score for the 
reference compounds (Fig. 3i–l) evaluated along with the 
GPR120 agonists ALPHA KETOMIDE (−7.4), LOPINA-
VIR (−7.9), SHIKONIN (−7.0), and TIDEGLUSIB (−8.0) 
indicate the interactions with Glu 166 and Cys 145 are 
present in these drugs also.

Compounds 13, 16, 17, 44, and 50 identified with high 
dock score are hydrophobic compounds having thio-
phenyl, cyclopentenyl, cyclohexenyl, norbornyl, and 
cyclopentenyl groups along with a phenylpropanoic acid 
function. Compound 40 is a phenoxyphenyl ether having 
a cyclopropropane carboxylic acid group while 34 has an 
isoxazolyl and pryrimidine compound with difluorometh-
ane function. Compound 65 is a tricyclic compound hav-
ing arylsulfonamide function. Compounds 13 and 52 
are highly lipophilic having a log P value of 7.1 and 6.25, 
respectively, that might require vigorous optimization to 
make them orally available. On the other hand, linoleic 
acid has a log P value of 5.65 while that of LOPINAVIR is 
4.56 and the value is 4.86 for TIDEGLUSIB. Hosseini et al. 
screened several classes of drugs and identified inhibitors 

for SARS-CoV-2 MPro and highlighted H bond interac-
tions with Thr 26, Phe 140, Gly 143, Glu 166, and Gln 189 
in addition to pi stacking interaction through His 140 as 
key contributors for receptor binding [67]. Our GPR 120 
agonists, 40, 47, and 65 revealed H bonding interaction 
with Glu 189 in the docking against MPro while hydro-
phobic interactions with His 41, Met 165, and Glu 166 
were shown by compounds 40, 48, 52, and 65. Fluvasta-
tin on the other hand was found to interact with Thr 26 
and Gly 143 by Maryam et  al., and a similar interaction 
was observed in our compound 40, which also interacted 
with Glu 166 and Cys 145. Compounds 65 and 34 have a 
log P value of 4.45 and 3.26, respectively, indicating that 
they might have a good oral bioavailability, although they 
require further optimization. The comparison of topologi-
cal polar surface area (TPSA) of the compounds evaluated 
show that only compound 34 has a TPSA value above 75, 
whereas the reference compounds have TPSA of 120 for 
lopinavir, a-ketoamide has a value of 113. This suggests 
that compounds 34 and 40 could be used as start points, 
and further optimizations could result in finding a drug 

Table 1  (continued)

(See figure on next page.)
Fig. 3  a GSK (65); Docking score −8.3. b BiAr-PPA (13); Docking score −8.2. c CycA_Hcyc--PPA (17); Docking score −8.0. d Merck (34); Docking score 
−7.9. e BMS (40); Docking score −8.0. f. PML (47); Docking score −8.0. g PML (48); Docking score −8.0. h PML (52); Docking score −8.0. Docking 
of the ligands onto MPro (6LU7). Docking images of ligands with docking score ≥ −7.9 are given (for other ligands please see Supplementary 
Information); i ALPHA KETOMIDE = -7.4; j LOPINAVIR = -7.9; k SHIKONIN = -7.0; l TIDEGLUSIB = -8.0
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Fig. 3  (See legend on previous page.)
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for Sars-COVID-19. Compound 34 possesses a hydroxyl 
isoxazole group that would mimic COOH function and 
also the presence of polar heterocyclic ring providing 
it an ideal choice to improve its physicochemical char-
acteristics. The compound 34 is in fact well anchored 
through H-bonded interactions, Pi interactions as shown 
in Fig. 3d. Similar to compound 40, having a cyclopropane 
carboxylic acid function could be optimized further to 
refine its log P to make this eligible as a lead compound. 
Obviously the GPR 120 agonists, designed as agonists for 
free fatty acid receptors, have functional groups and lipo-
philic characters designed for their receptor need to be 
tweaked to suit the binding interactions with MPro. These 
compounds identified through the present study are func-
tionally similar to linoleic acid, a free fatty acid that has 
been found to occupy the binding pocket of spike protein 
in SARS-CoV-2 [68]. Comparing the free fatty acid, lin-
oleic acid, the GPR 120 agonists identified herein possess 
several beneficial physicochemical properties in terms of 
favourable log P values and topological polar surface area, 
making them suitable for oral administration (Fig. 2c).

Toxicity prediction for compound 34, using online 
tool “protox_II,” indicates that the molecule is safe for 
all the targets except showing carcinogenicity and hepa-
totoxicity of 0.51 and 0.64, respectively, further requir-
ing structural modification. This compound also has 
an LD 50 value of 300 mg/kg and falls under predicted 
toxicity class 3, indicating it is only slightly toxic and 
slightly irritating.

Conclusions
The present data supports the possibility of repurpos-
ing free fatty acid GPR 120 receptor agonists as poten-
tial inhibitors of Sars-COVID-19 M-Pro protein. Based 

on docking score and key interactions with the amino 
acid residues in the target protein, compound 34 could 
be used as a lead compound. The presence of COOH 
mimicking hydroxyl isoxazole group could provide nec-
essary drug-like property in addition to maintaining 
H-bond and pi interactions with the receptor. Favorable 
logP and available physicochemical and toxicity data 
of compound 34 could shorten the drug development 
time to position the compound as an early lead candi-
date to overcome the hurdles in identifying therapeutic 
drugs in coronavirus infection.
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