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Abstract 

Background:  The baculovirus expression vector system has been developed for expressing a wide range of pro-
teins, including enzymes, glycoproteins, recombinant viruses, and vaccines. The availability of the SARS-CoV-2 
genome sequence has enabled the synthesis of SARS-CoV2 proteins in a baculovirus-insect cell platform for various 
applications.

Main body of the abstract:  The most cloned SARS-CoV-2 protein is the spike protein, which plays a critical role in 
SARS-CoV-2 infection. It is available in its whole length or as subunits like S1 or the receptor-binding domain (RBD). 
Non-structural proteins (Nsps), another recombinant SARS-CoV-2 protein generated by the baculovirus expression 
vector system (BEV), are used in the identification of new medications or the repurposing of existing therapies for the 
treatment of COVID-19. Non-SARS-CoV-2 proteins generated by BEV for SARS-CoV-2 diagnosis or treatment include 
moloney murine leukemia virus reverse transcriptase (MMLVRT), angiotensin converting enzyme 2 (ACE2), therapeutic 
proteins, and recombinant antibodies. The recombinant proteins were modified to boost the yield or to stabilize the 
protein.

Conclusion:  This review covers the wide application of the recombinant protein produced using the baculovirus 
expression technology for COVID-19 research. A lot of improvements have been made to produce functional proteins 
with high yields. However, there is still room for improvement and there are parts of this field of research that have not 
been investigated yet.

Keywords:  SARS-CoV-2, COVID-19, Baculovirus expression system, Spike protein, Non-structural protein, Angiotensin 
converting enzyme 2, Recombinant antibodies, Therapeutic proteins
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Background
The baculovirus expression vector system (BEV) has 
been in use for more than 30 years [1]. Thousands of pro-
teins have been successfully created using the BEV plat-
form, and it is no longer limited to research purposes; 
it is now being used on a broad scale to manufacture a 

variety of biological products, including vaccines. At first, 
only two BEV-derived vaccines were commercialized [2]. 
Since then, numerous products have been approved for 
usage, including the latest Novavax’s COVID-19 vaccine 
[3]. BEV is made up of three parts: a transfer plasmid 
with a foreign gene to be inserted into the baculovirus 
genome, a baculovirus vector (i.e., bacmid) or baculo-
virus DNA (linearized DNA), and insect cell lines [4]. 
Strong promoters, such as the polyhedrin promoter, 
govern the transcription of the gene insert [5]. The origi-
nal polyhedrin gene is replaced with multiple cloning 
sites for the insertion of the foreign gene downstream 
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of the promoter [6]. The plasmid is then co-transfected 
with baculovirus DNA into insect cells [7]. Homologous 
recombination will be used to integrate the recombinant 
gene into the baculovirus genome [8]. Large-scale protein 
expression has been modified to incorporate larvae such 
as silkworm larvae. Using larvae instead of cells to make 
more protein has a number of benefits, such as increas-
ing capacity and lowering the cost of making protein on 
a large scale [9].

The BEV platform has been used to express a wide 
range of proteins, including enzymes, glycoproteins, 
recombinant viruses, and vaccines [10]. The application 
of baculovirus as a vector for DNA delivery in humans 
is relatively safe because the virus cannot replicate in 
humans [11]. Moreover, the BEV has various advantages 
compared to other expression systems. The produc-
tion of protein in the BEV is relatively simple compared 
to the mammalian expression system, which requires a 
CO2 incubator. However, unlike bacteria, it still has the 
post-translational capabilities to produce the glycosylated 
protein. In fact, baculovirus has been engineered to 
introduce a complex glycan structure to the recombinant 
protein that is normally found in mammals [12]. Moreo-
ver, the yield of the recombinant protein produced in 
BEV can be increased further using the baculovirus sur-
face display method, where the ORF of the gene is fused 
in between the signal peptide of the BV glycoprotein 
GP64 and the mature GP64 sequence, causing the protein 
to fold correctly and become immunogenic enough to be 
taken by antigen-presenting cells [13]. The application of 
nanotechnology has sped up vaccine development, which 
includes the first mRNA vaccines for COVID-19 [14]. 
The nanoparticles act as carriers to protect the vaccine 
and get it to the target site.

As the number of COVID-19 patients increases around 
the world, scientists are focusing their efforts on every 
aspect of the disease, from diagnostics to therapies, by 
leveraging new technologies or exploiting existing plat-
forms like BEV. This review gathers all the information 
from major databases about the application of BEV for 
the development of COVID-19 diagnosis and treatments 
to give insight about the achievement and limitations as 
well as opportunities in this field. This article also reviews 
the integration of nanotechnology into COVID-19 diag-
nostic and therapeutic research.

The general process of producing SARS-CoV-2 pro-
teins in BEV is shown in Fig. 1.

Literature survey
Literature resources were searched from PubMed, Sci-
enceDirect, Google Scholar, and Scopus databases using 
keyword combinations such as baculovirus expres-
sion AND (sars-cov-2 OR 2019nCoV OR severe acute 

respiratory syndrome coronavirus 2). The specific queries 
for each database are given in Table S1. The inclusion cri-
teria were any study or article related to the production 
of SARS-CoV-2 protein using baculovirus expression sys-
tems. Articles that reported the use of expression systems 
other than baculovirus or the production of recombi-
nant protein from viruses other than SARS-CoV-2 were 
excluded. Only publications in English were selected. In 
addition, only original articles reporting the production 
of SARS-CoV-2 proteins for diagnostic and therapeutic 
research were chosen. The Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) chart 
for this review is shown in Fig. 2.

The SARS‑CoV‑2 proteins produced in BEV
SARS-CoV-2 viral particles consist of spikes (S), mem-
branes (M), envelopes (E), and nucleocapsid (N) pro-
teins [15]. The S protein binds to the human angiotensin 
converting enzyme 2 (hACE2) via its receptor-binding 
domain (RBD) during SARS-CoV-2 infection [16]. The S 
and N proteins have been discovered to be viral materials 
that can be utilized to detect coronavirus infections, such 
as SARS-CoV-2 [17]. The signal peptide, the S1 subunit, 
and the S2 subunit make up the spike protein [18]. The S1 
subunit consists of an N-terminal domain (NTD), and a 
C-terminal domain (CTD) where the RBD is located [19].

A single purification yielded both non-glycosylated and 
glycosylated forms of the S protein, as well as other insect 
cell proteins [20]. In insect cells, the glycosylated S pro-
tein is decorated with 38 N-glycans, which mostly consist 
of oligomannose (Hex) and fucose (Fuc), while in human 
cells, the S protein is glycosylated with 157 N-glycans, 
mainly containing extra N-acetylglucosamine (HexNAc) 
and galactose (Hex), variably terminating with sialic acid 
(NeuAc) [21]. Glycosylation at the binding site and the 
proximate amino acid can affect the interaction between 
the spike protein and the host cell [22]. It was reported 
that the glycosylated S1 showed lower binding affinities 
to ACE2 as compared to the non-glycosylated [23]. Addi-
tionally, molecular dynamic (MD) simulations show that 
glycosylation creates steric effects that have an impact on 
the interaction between the N-terminal sequence of S1 
and ACE2. However, the low molecular size of the N-gly-
cans synthesized in insect cells produces lower steric 
effects as compared to mammalian cells. The Coulombic 
repulsion, which drives S1 away from ACE2, is absent in 
proteins derived from insect cells. This is because sia-
lylation occurs only in N-glycans that are synthesized by 
mammalian cells.

The furin protease produced by insect cells breaks 
the synthesized S protein into S1 and S2 subunits [16]. 
Besides, recombinant SARS-CoV-2 proteins produced 
in silkworm larvae were also exposed to furin protease 
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digestion [24]. The in-cell digestion resulted in the loss of 
the N-terminal signal peptide from the C-terminal half 
of S protein, preventing the truncated form of the pro-
tein from being secreted to silkworm serum. As a result, 
less protein could be recovered. The removal of a furin-
recognized polybasic cleavage site and the inclusion of a 
stabilizing mutation in the S2 subunit by replacing K986P 
and V987P with prolines can stabilize and improve S pro-
tein production (Fig. 3) [16]. This modification keeps the 

S protein from extending its central helix, which keeps it 
in its prefusion state [25].

Application of baculovirus expression vector 
system (BEV) for SARS‑CoV‑2 diagnostics 
and therapeutics
Diagnostic applications
The widespread transmission of SARS-CoV-2 necessi-
tates a quick and accurate diagnosis of COVID-19 dis-
ease. COVID-19 is diagnosed using either molecular or 

Fig. 1  An overview of the general process for SAR-CoV-2 protein production in BEV. A baculovirus vector encoding the SARS-CoV-2 protein is 
transformed into competent E. coli. Translocation occurred in E. coli where the gene encoding SARS-CoV-2 protein was transferred from the donor 
plasmid to the bacmid. The bacmid is extracted from E. coli and used to transfect insect cells for the generation of recombinant baculoviruses. The 
recombinant baculovirus is further amplified for up scaling of the recombinant protein production. High-scale protein production is produced in 
bioreactors or by silkworm larvae. The protein is purified and analyzed before being used for various applications
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serum-specific antibody detection assays [26]. Antibody 
detection against SARS-CoV-2 is beneficial for analyz-
ing infected patients’ immune responses, determining 
the rate of infection in specific areas, and identifying a 
person with strong antibody responses who might be a 
donor for convalescent serum or plasma therapies [27]. 
The two assays that have been approved for the diagno-
sis of COVID-19 are the enzyme-linked immunosorb-
ent assay (ELISA) and lateral flow [17]. The BEV-derived 

spike protein has been used to diagnose COVID-19 dis-
ease (Table 1) [27].

The spike protein was used to coat 96-well plates in 
ELISA for the detection of IgG, IgA, or IgM antibodies 
in the positive serum, with IgG being the most preferred 
antibody because it is upregulated 1–7 days after COVID-
19 detection and its level remains high and detectable for 
at least 3 months [33]. In an ELISA test, it was discov-
ered that COVID-19 sera responded highly to full-length 
S protein compared to RBD [27]. Furthermore, the test 
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Duplicate records removed (n
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Fig. 2  PRISMA chart. The flow chart shows a detailed presentation of the number of studies retrieved, deduplicated, excluded during screening, 
and included in this review

(See figure on next page.)
Fig. 3  The production of SAR-CoV-2 spike protein or its subunits in BEV. Infected insect cells produce wild-type or mutated spike protein, or 
RBD. The wild-type spike protein is cleaved by furin protease but not the mutated protein. All the proteins produced by the insect cell will be 
glycosylated. The recombinant proteins are used for diagnostic and therapeutic studies such as vaccines, therapeutic proteins, and antibody 
development
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Fig. 3  (See legend on previous page.)
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was able to distinguish between serum from COVID-19 
patients and serum from convalescent samples. Most 
notably, the test was highly specific such that it does not 
detect other human viruses’ infections, including the 
human immunodeficiency virus (HIV) and other human 
coronaviruses. The use of S protein for anti-SARS-CoV-2 
antibody detection was further expanded with fluoro-
metric detection methods [29]. Human serum spiked 
with monoclonal IgM anti-COVID-19 was used to evalu-
ate a microcapillary film (MCF) containing an array of 10 
micro-capillaries coated with 15 μg/ml SARS-CoV2-S1. 
The strip was coated with the AttoPhos® AP Fluorescent 
Substrate System (Promega). Then the secondary anti-
body anti-human IgG or IgM conjugated with alkaline 
phosphatase was added to generate the fluorescent sig-
nal. The signal was captured with a camera and analyzed 
with ImageJ software.

The BEV platform was also used to synthesize subdo-
mains of SARS-CoV-2 S proteins, such as S1 and its sub-
domain, RBD, instead of full-length spike proteins, where 
in some cases, the S1 protein was found to be the best 
performing antigen, such as in a Luminex-based suspen-
sion immunoassay (SIA) [34]. The S1 subunit was effi-
ciently secreted with the addition of a signal peptide to 
the gene construct, and the S1 subunit was detectable 
in both cell extracts and supernatant, as opposed to the 

full-length spike protein [30]. The proteins were gener-
ated in large quantities in Tnao38 cells, and S1 protein 
purification in the supernatant yielded an 85% pure pro-
tein with a yield of 1 mg/l (Table  1). Tnao38 and High 
Five cells produce significantly more recombinant pro-
tein than Sf9 cells, although Sf9 cells have a higher capac-
ity for producing infectious virus particles [35]. As a 
result, Sf9 cells are employed to make recombinant bacu-
lovirus while Tnao38 or High Five cells are used for large-
scale protein production. For low-cost production, the 
large-scale SARS-CoV-2 spike protein is also produced 
in insect larvae such as silkworms and Rachiplusia nu 
[28]. A commercial ELISA test has been developed from 
RBD antigen which can be performed manually using 
basic laboratory equipment [31]. Its performance was no 
different from that of automatic ELISA if a high-quality 
antigen was used.

In other studies, a SARS-CoV-2 nucleocapsid pro-
tein was produced in BEV using a suspension culture of 
insect cells [36]. A total of 1 mg of protein was purified 
from 50 mg of crude protein. S and N proteins coupled 
to magnetic beads were used for the detection of anti-
SARS-CoV-2 antibodies in the serum samples [32]. Apart 
from producing SARS-CoV-2 protein, baculovirus is also 
used for generating SARS-CoV-2 pseudovirus that can 
be handled in BSL-2 laboratories, which are more widely 

Table 1  Recombinant proteins produced at laboratory scale using BEV for diagnosis of COVID-19

Proteins Modifications Host Cells Purification 
Method

Yield Purity Specific 
Applications

References

Moloney 
MurineLeu-
kemia Virus 
Reverse 
Transcriptase 
(MMLV-RT)

TEV-8xHis-Strep 
tag added

Sf9 Ni-NTA affinity 
chromatog-
raphy

7.5 mg/l 95% qRT-PCR [15]

Spike Protein, 
S1 and recep-
tor binding 
domain.

Signal peptides, 
T4 foldon 
trimeriza-
tion domain, 
cleavage sites 
and peptide 
tags added. 
Mutations 
introduced to 
the sequences.

Sf9/High 
Five/Tnao38/Tnms42/Rachiplusia 
nu larvae

Ni-NTA affinity 
chromatog-
raphy

0.5 – 1.5 mg/l 
or 15 ug/g 
larvae

Up to 99% ELISA [27–31]

Spike and 
nucleocapsid 
protein

Removal of 
transmem-
brane and 
endodomains. 
Kozak motif, 
IZN4 fold on 
trimerization, 
thrombin cleav-
age site and 
hexahistidine 
tag added.

Sf9/High Five Ni-NTA affinity 
chromatog-
raphy

Not measured Not measured mPLEX-CoV 
assay

32]
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available compared to BSL-3 containment [37]. A SARS-
CoV-2 spike protein pseudotyped baculovirus was cre-
ated for the infection model study. It was detected using 
an anti-spike antibody attached to gold nanoparticles.

Non-SARS-CoV-2 proteins, such as Moloney murine 
leukemia virus reverse transcriptase (MMLVRT), were 
also produced in BEV for use in the one-step reverse-
transcription quantitative polymerase chain reaction 
(qRT-PCR) for the diagnosis of COVID-19 [15]. The pro-
tein was synthesized in suspension culture and has a high 
concentration as well as purity (Table 1). The MMLVRT’s 
integration into RT-PCR allowed for the detection of as 
few as 10 copies of RNA. The results were comparable 
with those from commercial RT-PCR kits.

So far, only spike and nucleocapsid proteins have been 
produced in BEV for the diagnosis of COVID-19. The 
membrane protein of SARS-CoV-2 has been produced 
in other expression systems such as the E. coli expres-
sion system [38]. Hence, the potential of the M protein to 
be produced in BEV for diagnostic purposes remains to 
be explored further, especially with the emerging of new 
variants that reduce the sensitivity of the current diag-
nosis of COVID-19 disease [39]. In addition, there is an 
urgent need for rapid and simple tests that can detect a 
wide range of SARS-CoV-2 variants.

Nanoparticle-based biosensors that provide high sen-
sitivity and fast diagnosis are gaining interest [40]. A 
nano-biosensor for SARS-CoV-2 spike protein detection 
was developed by coating graphene sheets of the field-
effect transistor (FET) with a specific antibody against 
SARS-CoV-2 spike protein [41]. Other applications of 
nanotechnology for detection of SARS-CoV-2 spike pro-
tein include surface engineering of mixed SAMs of CH3 
and COOH groups coupled with anti-spike glycopro-
tein, membrane-engineered Vero cells, and fluorine tin 
oxide (FTO) electrode with gold nanoparticle (AuNPs) 
[42, 43]. Nanomaterials used for detecting SARS-CoV-2 
nucleic acids include gold nanoparticles and poly (amino 
ester) carboxyl groups (PC)-coated magnetic nanopar-
ticles (pcMNPs) [44–47]. AuNPs are also used for the 
detection of SARS-CoV-2 IgG-IgM combined antibod-
ies [48]. The RdRP coding sequences were used to detect 
the SARS-CoV-2 infection using magnetic nanoparticles 
(MNP) [49].

Therapeutic applications

Vaccine
As of now, the existing vaccines are inadequate to stop 
the spread of the COVID-19 disease due to the emer-
gence of new variants. Fortunately, at least 16 additional 
vaccines have progressed to the clinical trial stage [50]. 
Furthermore, COVID-19 research is progressing to 

generate more vaccines to combat the disease. Currently, 
there are five types of vaccines available, which include 
live virus and inactivated vaccines; subunit vaccines; vec-
tor vaccines; and nucleic acid vaccines [51].

Subunit vaccines were developed using the SARS-
CoV-2 protein, such as the S protein, which can trig-
ger the immune system (Table 2). The spike protein was 
modified to produce stable spike protein in insect cells 
by substituting K986 and V987 in the S2 subunit with 
prolines (PP), resulting in S2 being cleaved into a min-
ute fragment (Fig. 3) [16]. This fragment could be formed 
through proteolytic cleavage by the protease located 
within the S2 subunit [52]. Combining proline substitu-
tions with another mutation that removes the cleavage 
site from the S protein results in a recombinant pro-
tein that provides maximum protection in vaccinated 
mice with minimum weight loss [16]. In addition, it was 
modified further using a mix of proline substitutions, 
the insertion of a C-terminal thrombin cleavage site, 
and the inclusion of an “AGAG” sequence at the furin 
cleavage site, resulting in S-2P, a recombinant protein 
[20]. The yield of the trimer-stabilised S-2P protein was 
greater than the wild-type spike protein in insect cells. 
S-2P is a promising vaccine candidate because it evokes 
high neutralising antibodies in monkeys and has signifi-
cant reactivity with COVID-19 sera. It also had stronger 
immunogenicity at a lower inoculation dose. The S-2P 
protein was made soluble by replacing the transmem-
brane domain with a T4 foldon domain, resulting in a 
new recombinant spike protein called prefusion trans-
membrane-deleted spike (preS dTM) [53]. The preS dTM 
vaccine, which was adjuvanted with AS03 oil-in-water 
emulsion, generated a neutralising antibody response 
that protected nonhuman primates against a high dose of 
SARS-CoV-2 by giving protection in the upper and lower 
airways via a fast anamnestic response. Currently, this 
vaccine is progressing to a phase 3 clinical trial [54].

It was reported that the spike protein vaccine with 
Sepivac SWE™, a nanoemulsion oil (SWE) adjuvant, pro-
vided better protection to the challenged animals com-
pared to the RBD vaccine using the same adjuvant [65]. 
Besides, other adjuvants, such as Advax-SM, were also 
found to be effective for protection against SARS-CoV-2 
[66]. In other studies, it has been reported that the spike 
protein adjuvanted with gold nanoparticles induces a 
strong IgG response [67]. However, it fails to induce pro-
tective antibodies in the lungs.

A booster for the preS DTM vaccine derived from 
parental strain D614 or variant B.1.351 (Beta) has been 
formulated [68]. One dose of the vaccine formulated as 
monovalent D614 (parental) or B.1.351 (Beta) or biva-
lent (D614 + B.1.351) with AS03 adjuvant was found to 
significantly boost the existing neutralizing antibodies 
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produced after previous vaccination in macaque (Macaca 
mulatta). Currently, these vaccines are at the clinical 
stage.

The spike protein is a trimer in its natural state, but 
when it is recombinantly generated, it mostly becomes 
monomeric [69]. To create trimeric recombinant spike 
proteins, the T4 foldon, an artificial trimerization domain 
derived from the bacteriophage T4 fibritin protein, was 
inserted into the S protein construct [55]. Another way 
to make spike protein trimers is to fuse Helicobacter 
pylori ferritin at the N-terminus [56]. Ferritin is a protein 
made up of 24 identical polypeptides that naturally pro-
duces nanoparticles [70]. The SGG linker binds ferritin 
to either the ectodomain (S1 and S2), the S1 or the RBD 
[56]. The recombinant virus was made in BmN cells while 
the large-scale nanoparticle vaccine was made in larvae. 
The ectodomain (ECD) trimer induced the highest level 
of antibodies.

The S protein’s immunogenicity is not restricted to its 
full component. Its subunits, such as S1 and RBD, can 
trigger the immune system on their own, but their anti-
genicity is lower than that of the entire unit [20, 60, 71]. 
The advantage of generating subunits rather than full-
length spike proteins is that larger recombinant protein 
concentrations can be obtained (Table  2) [27]. Further-
more, when the plasmid vector was co-transfected with 
linearized baculovirus DNA defective in v-cath/
chiAgenes, the protein amount was considerably greater 
[20]. In fact, it is the greatest SARS-CoV-2 protein yield 
ever produced using BEV for COVID-19 research. The 
S1 protein conjugated with fucoidan/trimethylchitosan 
nanoparticles (FUC-TMC NPs) and cytosine-phosphate-
guanosine-oligodeoxynucleotides (CpG-ODNs) induces 
a broad spectrum neutralizing antibody response against 
SARS-CoV-2 variants [72]. Additionally, S1 protein was 
also coated with biopolymer particles (BP) to produce a 
vaccine that is stable at room temperature [57]. The bind-
ing of S1 protein with BP was mediated by the formation 
of an isopeptide bond between Spytagged S1 and SpyC 
displayed on the BP surface. This vaccine has been shown 
to provide protection for hamsters against SAR-CoV-2 
infection.

RBD was used for the development of the COVID-19 
vaccine using an adenovirus platform. The recombinant 
RBD was produced in an insect cell line before being 
displayed in the non-infectious adenovirus-inspired 
nanoparticle (ADDomer) [58]. Originally, the ADDomer 
platform was limited to simple antigens such as neutral-
izing epitopes from the Chikungunya virus. Its capabil-
ity is further extended with the Spy Tag/Spy Catcher 
system, which enables the insertion of complex anti-
gens such as RBD. The immunization of a mouse with 
the RBD vaccine elicited a significant anti-coronavirus 

humoral response, which was elevated further with the 
second vaccination. RBD was also fused to the rotavirus 
VP6-protein to create a fusion protein (FP) vaccine [59]. 
However, no RBD or S-specific antibodies were detected 
in the treated mice.

Apart from in vitro production, the S protein was also 
synthesized in vivo for the development of DNA vaccines 
by introducing DNA into the host using a baculovirus 
vector [60]. The CMV promoter was used to control the 
expression of the insert in the cells. The insertion of the 
envelope glycoprotein of human endogenous retrovirus 
(HERV) into the baculovirus genome improved the effi-
ciency of vaccine gene delivery [73]. The recombinant 
baculovirus expressing SARS-CoV-2 full-length spike 
protein and the HERV gene (AcHERV-COVID19-S) was 
able to elicit neutralizing antibodies specific to SARS-
CoV2 [60]. Additionally, virus titers were lower in the 
treated animals as well as fewer respiratory illnesses were 
observed in them. This result suggests that the vaccine 
could minimize SARS-CoV-2 infection.

Virus-like particle (VLP) is another type of COVID-19 
vaccine synthesized using a baculovirus-insect cell plat-
form that involves three techniques. In the first tech-
nique, the E, M, and S proteins were expressed in insect 
cells simultaneously using a triple expression plasmid 
[61]. Each component would be self-assembled in insect 
cells, forming a VLP. As for the second technique, the 
recombinant baculovirus expressing the full-length S, S1, 
or S2 proteins was co-transfected with another recom-
binant baculovirus expressing influenza matrix protein 
1 (M1) to form VLP in the insect cells [62]. In the third 
technique, the S1 protein was coupled to the bacte-
riophage AP205 VLP nanoparticles [63]. This was done 
using the Spytag/Spycatcher platform. This was formu-
lated as an adjuvanted vaccine.

The non-SARS-CoV-2 protein produced in BEV for a 
vaccine development study is human angiotensin con-
verting enzyme 2 (hACE2) [64]. It was synthesized to 
investigate its binding to the SARS-CoV-2 RBD-dimer 
produced in mammalian cells. In this study, HACE2 had 
low affinity for the RBD, which could be due to inade-
quate glycosylation of human protein in insect cells [74]. 
Glycosylation in insect cells results in glycoproteins with 
simple oligo-mannose sugar chains, as contrasted to gly-
coproteins with complex sugar groups and terminal sialic 
acids in mammalian cells [75]. Transformed insect cells, 
like the SfSWT-1, can synthesize mammalian proteins 
with complex N-glycan [74].

To date, 10 vaccines that were created using different 
platforms have been approved for usage [76]. The only 
BEV-derived vaccine that obtained approval is NovaVax’s 
NVX-CoV2373 [50]. The NVX-CoV2373 vaccine exhib-
ited 89.7% efficacy against SARS-CoV-2 infection and 
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good efficacy against the B.1.1.7 variant after two doses 
[77]. There are three more BEV-derived vaccines that 
have reached the first or second clinical phase [50].

The biggest issue for producing successful vaccines is 
the emergence of new variants, as the presently licensed 
vaccines show decreasing neutralizations, particu-
larly against the new Delta (B.1.617.2) and Omicron 
(B.1.1.529) variants [78, 79]. The two doses of inactivated 
vaccines followed by either a subunit, adenovirus-vec-
tored vaccine, or mRNA vaccine, were found to be more 
efficient than homologous vaccines as a boost method 
[80]. Additionally, a vaccine that target the less mutated 
region such as M and E proteins might be able to neu-
tralize any new variants. Side effects after vaccination 
is another shortcoming for the currently available vac-
cines. Indeed, it is one of the reasons for vaccine refusal. 
It was reported that the reactogenicity was dependent on 
the vaccine dosage where optimum dosage could help to 
minimize side effects such as headache, joint pain, diar-
rhea, and chilling [81]. Therefore, it is suggested that 
dosage need to be further optimized as to reduce the 
side effects, i.e., customizing the dosage according to the 
health status.

Cross-reactivity between different Adeno-associated 
viruses (AAV) serotypes has been reported to be 50% [61, 
62]. BEV-derived vaccines offer an alternative to adenovi-
rus-vectored vaccines, especially for people who develop 
Guillain-Barre Syndrome (GBS) after vaccination or who 
are undergoing gene therapy [82, 83]. Overall, the appli-
cation of BEV for vaccine development was primarily 
focused on subunit vaccines, but fewer studies were done 
on DNA vaccines, where only one study has been identi-
fied. There are a lot of aspects that remain to be explored, 
such as the use of different eukaryotic promoters, which 
might affect the efficiency of the vaccine. In addition, 
BEV can express multiple proteins simultaneously, and 
this feature can be used for the development of novel vac-
cines that can trigger the production of multiple antibod-
ies that can fight against different types of SARS-CoV2 
variants. Moreover, this type of vaccine can cover a wide 
range of coronavirus diseases. The integration of nano-
technology into vaccine development has been proven 
to be successful in delivering new generation nucleic acid 
vaccines, particularly mRNA, into cells. Lipid nanoparti-
cles (LNPs) have been used to protect mRNA from attack 
by ribonucleases and make it easier to get to the target 
site [14].

Protein and antibodies
The spike protein, which is essential for SARS-CoV or 
SARS-CoV-2 infection, has become a focus for therapeu-
tic development (Table 3). The attachment of RBD to the 
cells is the first step in the SARS-CoV-2 pathogenesis. As 

a result, binding of antibodies to the RBD would limit 
the SARS-CoV-2 infection [84]. Several studies reported 
the production of S, S2, or RBD proteins in BEV to study 
the binding of the antibody in the serum of convalescent 
individuals [85–93]. It is also reported that optimiza-
tion of several factors could lead to high yield antibody 
or antigen production in insect cell lines [94]. The inclu-
sion of the Kozak sequence as well as the signal peptide 
of the mouse Ig heavy chain variable region in the vector 
increased the protein expression by more than 50%, with 
the optimum harvesting time being 96 h after transfec-
tion. Furthermore, it was also discovered that High Five 
cells grown in EX-CELL405 media yield the most protein. 
Additionally, the antibodies could be made into a lyophi-
lized form without affecting their reactivity.

A monoclonal antibody against RBD, CR3022, has been 
produced using a silkworm-baculovirus expression vec-
tor system in three formats (scFv, Fab, and IgG) [95]. The 
affinity of the antibody towards S protein was equivalent 
to the one that was produced in the mammalian expres-
sion system. Additionally, the antibody production in 
silkworms gave a high yield as well as purity. The emer-
gence of new SARS-CoV-2 variants could potentially 
reduce the efficiency of monoclonal antibodies (mAbs) 
and vaccines. Hence, a polyclonal anti-SARS-CoV-2 
immunoglobulin was produced in transchromosomic 
(TC) bovines (Tc-hIgG-SARS-CoV-2) [97]. TC bovines 
are bovines that have been transformed with either 
human chromosome fragments, human artificial chro-
mosomes, or mouse artificial chromosomes [100]. The 
advantage of using TC bovines to produce antibodies is 
that they can produce high amounts of human IgG in 
their serum [101].

To produce the antibodies against SARS-CoV-2, the 
TC bovines were given two doses of the DNA encoding 
the Wuhan-Hu-1 strain Spike gene, followed by three 
doses of S protein generated in insect cells [97]. SAB-185 
antibodies were produced by purifying plasma from TC 
bovines. It was found that SARS-CoV-2 variants D614G, 
S477N, E484K, and N501Y could be neutralized by SAB-
185. It is now in the clinical phase of testing. A therapeu-
tic protein that targets SARS-CoV-2 spike protein has 
been developed and it is the tetravalent form of ACE2, 
which consists of four ACE2 extracellular domains cou-
pled to the human immunoglobulin g1 Fc region [96]. 
This tetrameric ACE2 protein binds strongly to the RBD. 
Additionally, it also has more potential compared to 
monomeric (sACE2) and dimeric (ACE2-Fc) ACE2.

Most antibodies isolated from COVID-19 patients are 
specific to SARS-CoV-2. There are also some antibod-
ies that can cross-neutralize other SARS-CoVs, includ-
ing COVA1-16, H014, EY6A, S304, and CV38-142 [93, 
102–105]. However, some of these antibodies have lower 
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potency against the SARS-CoV-2 variant of concern [93]. 
It was found that a combination of the two cross-neu-
tralizing antibodies such as CV38-142 and COVA1-16 
showed enhanced neutralization towards the two SARS-
CoV-2 variants of concern, B.1.1.7 and B.1.351. This 
synergistic effect occurred after the RBD bound to the 
COVA1-16 antibodies, where it was caught in the “up” 
state.

The S proteins produced in the BEV are also used for 
screening and isolation of nanobodies such as VHH. 
VHH nanobodies are heavy-chain only antibodies 
(hcAbs) generated by camelids or sharks that include a 
single variable domain in the antigen-binding segment 
of a naturally occurring IgG derivate [106, 107]. Nano-
bodies can be used to treat cancers, chronic disorders, as 
well as viral infections [107]. Alternatively, nanobodies 
can be produced using prokaryotic expression systems, 
which are highly scalable, rapid, and low-cost. A VHH 
library was created using bacteriophage and the specific 
nanobodies for SARS-CoV-2 S protein were screened, 
isolated, and tested against SARS-CoV-2 [106]. Using 
bacteriophage, a VHH library was generated, and specific 
nanobodies for SARS-CoV-2 S protein were screened, 
extracted, and tested against SARS-CoV-2 [96]. Using a 
bacterial display system, nanobodies can also be created 
without the need for bacteriophage [107]. E. coli bacteria 
in the bacterial display system contain intimin-Nanobody 

protein fusions that anchor in the outer membrane, 
exposing the functional nanobody to the extracellular 
environment for spike protein recognition, allowing the 
bacteria to adhere to spike protein-coated NHS-beads. 
The bacteria that express specific nanobodies travel all 
the way to the bottom of the Ficoll density gradient, leav-
ing unbound bacteria in the upper fraction. The nano-
bodies were further characterized, cloned, and their 
capacity to neutralize SARS-CoV-2 was tested. The bac-
terial display technique allows nanobodies to be made 
with very little equipment and reagents.

To develop antibodies for COVID-19 disease, BEV 
is also being used to produce non-SARS-CoV-2 pro-
teins such as ACE2 (Table 3). Two monoclonal antibod-
ies (mAbs) specific for SARS-CoV-2 RBD generated 
by memory B cells from peripheral blood mononuclear 
cells have been discovered [99]. BEV-produced ACE2 
for RBD binding was found to compete with CA1 and 
CB6 mABs. According to structure analysis, ACE2 and 
CB6 share numerous binding sites. CB6 binding induced 
steric hindrance, which was mediated by both the VH 
and VL domains of CB6, that prevented ACE2 from 
binding to the RBD. Currently, nine monoclonal antibod-
ies are in clinical trials, with three of them, LY-CoV555 
(Eli Lilly/AbCellera), REGN-COV2 (Regeneron), and 
CT-P59 (Celltrion), receiving Emergency Use Authoriza-
tion (EUA) from the US Food and Drug Administration 

Table 3  Recombinant proteins produced in BEV for the development of COVID-19’s recombinant anti-bodies and therapeutic 
proteins

Proteins Modifications Host Cells Purification Method Specific Applications References

Spike protein, S2, recep-
tor binding domain, 
antibodies, and fusion 
proteins

Leader sequences, 
peptide tags signal 
peptide and restriction 
sites added.

High Five/silkworm 
larvae

Gel filtration and affinity 
chromatography

Surface plasmon reso-
nance (SPR), ELISA

[87, 91, 92, 94–96]

Spike protein and 
antibodies

Signal peptides, 
pre-fusion stabi-lized 
ectodomain, T4 fibritin 
tri-merization signal, 
peptide tags, linker, 
cleavage site, linker, 
transmembrane and 
tail domain added. 
Mutations introduced to 
the sequences. Codon 
optimization.

High Five/ExpiSf9/silk-
worm larvae

Affinity chromatography scFv, Fab, IgY and IgG 
antibody productions

[94, 95, 97, 98]

Spike protein and recep-
tor binding domain

Signal peptide and 
peptide tag added. Bioti-
nylation.

Sf9/High Five Gel filtration, affinity, 
and size exclusion chro-
matography

Protein crystallizations [85, 86, 89, 90, 93]

Receptor binding 
domain and angiotensin 
converting enzyme 2

Peptide tag added. Sf9/High Five Affinity chromatography Cell sorting [88, 99]

Spike protein and recep-
tor binding domain

Biotinylation Not mentioned Not mentioned B cell enrichment [91]

Spike protein and recep-
tor binding domain

Signal peptide and 
peptide tag added.

Sf9/High Five Affinity and size exclu-
sion chromatography

Binding assays [93]
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(FDA) [84]. In addition, ACE2 has also been developed 
as a therapeutic protein, where it has reached the clini-
cal trial phase [108, 109]. Moreover, it has been found 
that substitutions of several ACE2 residues, such as S19, 
T27, and N330 with W19, W27, and Y330 could enhance 
their binding to SARS-CoV-2 S-RBD. This finding could 
become the basis for developing a new ACE2 therapeutic 
protein [110].

As a potential therapeutic for COVID-19 disease, 
SARS-CoV-2 S1 protein has been used for the produc-
tion of egg yolk antibodies (IgY) [98]. The S1 protein 
produced in Sf9 insect cells was emulsified with Freund’s 
immune adjuvant and injected into hens. The IgY was 
extracted and tested against the SARS-CoV-2. The anti-
bodies showed significant neutralizing potency against 
SARS-CoV-2.

Manufacturing antibodies against SARS-CoV-2 in vast 
quantities involves a high cost. The use of silkworm lar-
vae to produce recombinant antibodies can reduce the 
production cost. In fact, it should be further investi-
gated with larvae from other species, particularly those 
with fast growth and requiring minimum care. Addition-
ally, the compatibility of larvae-derived antibodies with 
humans also needs to be investigated further.

Novel and repurposed drugs
The current situation of the COVID-19 pandemic 
demands immediate antiviral treatments to relieve the 
burden on the global healthcare system. The BEV plat-
form has been used in research to find novel drugs as 
well as to study the antiviral activities of existing drugs 
against SARS-CoV2 (Table  4). Genome replication and 
translation of RNA viruses, including SARS-CoV-2, is 
carried out by RNA-dependent RNA polymerase (RdRP) 
[111]. RdRP is the polyprotein encoded by ORF-1a and 
ORF-1ab, which are located at the 5′-end of the SARS-
CoV-2 genome (Fig. 4) [112].

The two ORFs encode precursor polyproteins for 16 
nonstructural proteins (nsp1 to nsp16) which form the 
replicase–transcriptase complex (RTC) that consists of 
multiple enzymes, including papain-like protease (nsp3), 
chymotrypsin-like main protease (3CL protease, nsp5), 
primase complex (nsp7 and nsp8), RdRP (nsp12), heli-
case (nsp13), and exoribonuclease (nsp14) [127]. Because 
RdRp has no host cell homolog, its inhibitors would have 
no effect on proteins in human cells. This has resulted 
in RdRP becoming the target for nucleotide analogue 
drugs such as Remdesivir (RDV) and Favipiravir [116, 
127]. The RdRP complex (nsp5-7-8-12) polyproteins pro-
duced in insect cells will be cleaved by the nsp5 protease 
into an active binary nsp8/12 RdRp complex. Alterna-
tively, nsp12, nsp7, and nsp8 can be produced by gener-
ating separate baculoviruses for each protein [117]. In 

addition, nsp proteins were also produced in different 
expression systems. For example, nsp12 was produced 
in BEV while its cofactors nsp7 and nsp8 were expressed 
in the E. coli expression system [113]. Further investiga-
tion found that the expression of the RdRP complex was 
highly increased with the addition of the His6-3xFlag tag 
on nsp12 (Sf nsp12-HF) and a neutral 6 amino acid (Gly-
Gly-Ser) 2-linker between nsp7 and nsp8 [118].

Nucleotide analogue drugs are produced in their 
triphosphate form to act as substrates for RdRP, which 
results in termination of RNA synthesis [116]. The ter-
mination of RNA synthesis by Remdesivir triphosphate 
form (RDV-TP) does not occur immediately. Its incor-
poration at position ‘i’ commonly results in delayed 
chain termination between positions i+3 and i+5 after 
a few nucleotide incorporation events. The cryo-electron 
microscopy (cryo-EM) images of RdRP in complex with 
the template, primer double-stranded RNA (dsRNA), 
and favipiravir ribonucleoside triphosphate (favipiravir-
RTP) revealed that favipiravir, which was present at the 
active site of RdRP, stacks onto the 3′ nucleotide of the 
primer strand by forming a noncanonical base pair with 
the cytosine in the template strand [56]. Favipiravir, like 
other nucleotide analogues such as ribavirin and penci-
clovir, binds to + 1 sites at the RdRP complex, but due 
to the drug’s nonproductive conformation in the poly-
merase active site, it is only weakly incorporated into the 
RNA primer strand [117]. The 3′OH of the P-1 nucleo-
tide in the template strand is not orientated for nucleo-
philic attack on the β-phosphate of favipiravir-RTP [119].

Favipiravir, ribavirin, and penciclovir were found to be 
less effective than remdesivir [117]. Remdesivir, despite 
this, is difficult to synthesize, administer, and can even 
cause hepatotoxicity. As a result, it was further modified 
to obtain oral delivery as well as a uniform distribution 
of the nucleoside and nucleotide metabolites through-
out the body, particularly in organs that are particularly 
susceptible to SARS-CoV-2, such as the lungs. The inser-
tion of a deuterium atom at the C5 position of the base 
moiety, as well as esterification with isobutyric acid, are 
examples of such changes. The X3 molecule showed a 
5-fold increased replication inhibition compared to the 
original remdesivir.

Suramin is another potential drug for treating COVID-
19, which is at least 20-fold more potent than remdesivir 
against SARS-CoV-2 [120]. The inhibition mechanism of 
suramin is the same as remdesivir but it occupies a dif-
ferent base position at RdRP. Additionally, suramin also 
interferes with multiple steps of coronavirus infection 
and replication, which include interruption of host-cell 
interaction, cellular uptake, as well as inhibition of viral 
helicase activities [123]. There are several limitations 
which hinder the application of suramin for the treatment 
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of COVID-19, such as its high negative charge that 
restricts its entry into cells, potential off-target effects 
on other cellular enzymes and exposure to endocytosis 
[120, 123]. The uptake rate of suramin by the cells can 
be improved by liposomal delivery [123]. Caspofungin 
acetate (Cancidas) and the oncolytic peptide LTX-315 
are another two potential drugs for treating COVID-19 
[113]. Other potential compounds include R406 (fos-
tamatinib) and ibrutinib [124]. Several novel compounds 
that have the potential for treating COVID-19 have been 
discovered. Such drugs are GSK-650394 and C646 [118]. 
These compounds were found to inhibit SARS-CoV-2 
RdRp activity at non-cytotoxic concentrations.

Molnupiravir is another oral drug that can serve as a 
substrate for RNA polymerases. It can be taken orally 
and intracellularly metabolized to its triphosphate form 
(NHC-TP) [121]. However, using RdRP synthesized in 
the BEV, it was found that the natural nucleotide, Cyti-
dine triphosphate (CTP), is 30-fold preferable to NHC-
TP. Besides synthetic compounds, there are also natural 
alkaloids that were found to bind to SARS-CoV-2 RdRP, 
such as emetine and cephaeline [114]. Emetine is an alka-
loid that comes from the root of the ipecac plant, Carapi-
chea ipecacuanha. Cephaeline is a desmethyl version of 
emetine.

There are a total of at least nine enzymatic activities in 
SARS-CoV-2 which are potential for drug targets [125]. 
Those enzymes and their cofactors that have been pro-
duced using BEV are nsp3, nsp5, nsp10, nsp13, and 

nsp14 (Table  4) [116, 122, 123, 126]. Nsp3 contains a 
papain-like protease (PLpro) which generates viral non-
structural proteins from a polyprotein precursor [126]. 
Recombinant nsp3 produced in insect cells was less 
active compared to the nsp3 produced in bacteria. The 
PLpro activity was inhibited by dihydrotanshinone I, a 
derivative of tanshinones, which resulted in inhibition of 
SARS-CoV-2 proliferation at an EC50 of 8 μM. Addition-
ally, dihydrotanshinone I did not exhibit much cytotox-
icity, even at high concentrations. Further investigation 
showed that it has no synergistic effect with remdesivir.

Nsp14 is an exoribonuclease/methyltransferase whose 
cofactor is nsp10. It reduces the host innate antiviral 
immune response by cleaving viral-associated double-
stranded RNAs and by regulating viral genome recombi-
nation [122]. It became the target for developing a new 
antivirus for COVID-19. As of nsp12/7/8, nsp14 and 
nsp10 were more active when they were fused together 
with a short linker.

Nsp13 encodes a viral helicase and hence plays an 
essential role in viral replication and proliferation where 
it unwinds DNA or RNA in an NTP-dependent manner 
with a 5′ to 3′ polarity [123]. As opposed to nsp3, nsp13 
produced in insect cells was more active than nsp13 pro-
duced in bacteria [126]. Nsp13 might be more active in 
its glycosylated form, which results from post-transla-
tional modifications in insect cells. Suramin and FPA-124 
were found to be potential nsp13 inhibitors with lower 
IC50 in vitro and lower anti-viral EC50 in cell-based assays 

Table 4  Recombinant proteins produced in BEV for the development of new drugs or repurposing the existing drugs for COVID-19

Proteins Modifications Host Cells Purification Method Specific Applications References

Nsp12 Cleavage site and peptide 
tags added.

High Five Size exclusion chromatog-
raphy

In vitro polymerase inhibi-
tion assay

[113]

Nsp12, spike protein and 
receptor binding domain

Cleavage site changed. Trim-
erization domain, sequence 
motifs and peptide tags 
added. Codon optimization.

High Five Affinity and size exclusion 
chromatography

Surface plasmon reso-
nance (SPR)

[113–115]

RNA-dependent RNA poly-
merase (RdRp) complexes 
(nsp5, nsp7, nsp8, nsp10, 
nsp12 and nsp14)

Peptide tags, cleavage site, 
linker and sequence motifs 
added. Codon optimization.

Sf9 Affinity and size exclusion 
chromatography

RNA synthesis assay [116–122]

Nsp13 Peptide tags added. Codon 
optimization.

Sf9 Affinity chromatography Helicase assay [123]

S1 No modification. Sf9/Tnao38 Affinity chromatography Platelet adhesion assay, 
In vitro thrombus forma-
tion and Flow cytometry 
measurement of fibrinogen 
binding.

[124]

Nsp9 Peptide tags added. Codon 
optimization.

Sf9 Affinity chromatography Gel based nsp9 cleavage 
assay

[125]

papain-like protease (PLpro) Peptide tags added. Codon 
optimization.

Sf9 Not mentioned Protease assay [126]

Spike protein and receptor 
binding domain

A trimerization domain 
added. Cleavage site added.

High Five Not mentioned ELISA [115]
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Fig. 4  The NSPs produced in BEV and their inhibitors. There is a total of five SAR-COV-2 Nsp proteins produced in BEV and tested with their 
respective inhibitors. Nsp3 was inhibited by Dihydro-tanshinone I. Nsp 10 is a cofactor for Nsp14. Nsp12, which encodes for RdRP, was inhibited by 
10 drugs (Remdesivir, Favipiravir, Penciclovir, X3, Suramin, Cancidas, LTX-315, GSK-650394, and Suramin). Suramin inhibited both Nsp12 and Nsp13. 
Nsp14 was inhibited by Patulin and ATA​
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as compared to the previously reported compounds, 
myricetin and SSYA10-001 [123]. The nsps produced by 
BEV and its inhibitors are illustrated in Fig. 4.

It has been reported that lipids play a role in the sup-
pression of viral infection [128]. The essential free fatty 
acid linoleic acid (LA) is a lipid that binds to the SARS-
CoV-2 spike protein at RBD [115]. The attachment is pro-
vided by an arginine (Arg408) and a glutamine (Gln409) 
from the adjacent RBD. LA reduced the binding of RBD 
to ACE2 by stabilizing the closed conformation of the 
SARS-CO-V2 spike protein. The S protein is only acces-
sible in an open state, that is, when the RBD is in an up 
position [129]. Further investigation found that there is a 
synergy between LA and remdesivir. The remdesivir dos-
age is reduced with the addition of LA.

Nanoceria is a rare earth nanoparticle that possesses prom-
ising anti-inflammatory properties by inhibition of NFκB and 
MAPK pathways, which could halt the progression of systemic 
inflammatory complications in COVID-19 patients [130]. Bili-
rubin, decorin, and silver nanoparticles are other nanomedi-
cines that act in almost similar ways to nanoceria [131–133].

As of now, only four drugs are approved for treating 
COVID-19 [134]. Paxlovid and Molnupiravir are orally avail-
able, while Sotrovimab and Remdesivir are administered 
through intravenous infusion. There are numerous antiviral 
drugs on the market, and BEV-derived protein can be used 
to simulate the antiviral effects of these drugs on SARS-
CoV-2. Moreover, the antiviral activities of natural alkaloids 
or plant-derived compounds have been less investigated.

Conclusions
The baculovirus expression vector technology was not 
only relevant until today, but also proved to be highly ben-
eficial in dealing with the current COVID-19 pandemic. 
However, given its complexity in comparison to other 
expression systems such as bacteria and yeast, there is 
always room for improvement. To summarize, the spike 
protein is the most cloned SARS-COV-2 protein, with 
Ni-NTA affinity chromatography being the most com-
mon purification method and the His tag being the most 
utilized protein tag in BEV for the COVID-19 study. Cur-
rently, the only BEV-derived vaccine approved for usage is 
subunit vaccines. Therefore, more studies are required to 
obtain approval for the other types of vaccines.

The use of nanoparticles led to high sensitivity and fast 
diagnosis as well as improved drug delivery for COVID-
19. However, nanoparticles are expensive to produce and 
require strong infrastructure. At present, affordable con-
ventional drugs are effective enough to treat COVID-19. 
Therefore, expensive nanomedicine is not a wise choice 
for the time being. Still, nanotechnology is expected to 
get cheaper and more widely available over time.

The emergence of the new variants has made the exist-
ing detection and treatment less efficient. As a result, 
more studies are required to generate new knowledge 
about the COVID-19 disease in order to develop new 
innovations that can cater to all types of SARS-CoV-2 
variants. In view of this, the continuous improvement of 
the BEV can play an important role. Scalability and flex-
ibility are among the crucial elements for such improve-
ments. The availability of a highly customizable platform 
with a low manufacturing cost is very useful, especially 
for dealing with future pandemics. It is predicted that for 
BEV, the use of insect larvae for large-scale and low-cost 
recombinant protein production will be expanded. Lastly, 
the baculovirus vector is expected to be reinvented con-
tinuously to obtain a high yield of the recombinant pro-
tein with minimum input.
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