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Abstract 

Background:  Cocoonase is a serine protease present in sericigenous insects and majorly involved in dissolving of 
sericin protein allowing moth to escape. Cocoon structure is made up of sericin protein which holds fibroin filaments 
together. Cocoonase enzyme hydrolyzes sericin protein without harming the fibroin. However, until date, no detailed 
characterization of cocoonase enzyme and its presence in wild silk moth Antheraea mylitta has been carried out. 
Therefore, current study aimed for detailed characterization of amplified cocoonase enzyme, secondary and tertiary 
structure prediction, sequence and structural alignment, phylogenetic analysis, and computational validation. Several 
computational tools such as ProtParam, Iterative Threading Assembly Refinement (I-TASSER), PROCHECK, SAVES v6.0, 
TM-align, Molecular Evolutionary Genetics Analysis (MEGA) X, and Figtree were employed for characterization of 
cocoonase protein.

Results:  The present study elucidates about the isolation of RNA, cDNA preparation, PCR amplification, and in silico 
characterization of cocoonase from Antheraea mylitta. Here, total RNA was isolated from head region of A. mylitta, 
and gene-specific primers were designed using Primer3 followed by PCR-based amplification and sequencing. The 
newly constructed 377-bp length sequence of cocoonase was subjected to in silico characterization. In silico study of 
A. mylitta cocoonase showed 26% similarity to A. pernyi strain Qing-6 cocoonase using Blastp and belongs to member 
of chymotrypsin-like serine protease superfamily. From phylogenetic study, it was found that A. mylitta cocoonase 
sequence is closely related to A. pernyi cocoonase sequence.

Conclusions:  The present study revealed about the detailed in silico characterization of cocoonase gene and 
encoded protein obtained from A. mylitta head region. The results obtained infer the presence of cocoonase enzyme 
in the wild silkworm A. mylitta and can be used for cocoon degumming which will be a valuable and cost-effective 
strategy in silk industry.
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Background
Among animal groups on the planet, insects are the most 
prosperous and are present in every corner of the world 
[1]. The advantage of insect’s adaptabilities is associated 
with their long-term evolution process into the environ-
ment, such as reproduction ability, short life cycle, and 
favorable small size to hide them. Additionally, insects 

enclose incisive life-cycle strategies, such as diapause 
[2], mimicry [3] and aposematic signals [4], and long-
distance migration [5, 6], which are favorable for survival 
and population growth. Few holometabolous insects have 
adapted to cocoon formation as one of the effectual evo-
lutionary strategies that helps to protect immobile pupa 
from mechanical damage, natural predators, parasites, 
and other adverse factors.

Significant population of insects from Lepidoptera, 
Coleoptera, Hymenoptera, and Neuroptera [7–9] are 
capable of spinning. Mature insect larvae spun raw 
protein material (sericin and fibroin) secreted by its 
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silk gland [10] to build cocoon, for instance, cocoon of 
domestic silk moth Bombyx mori, Antheraea pernyi, and 
Antheraea mylitta [11–13]. The report from previous 
study highlights the presence of a protease that hydro-
lyzes sericin, making the cocoon soft, and helps the moth 
to escape out [14, 15]. The metabolic pathway of peptide 
digestion is an important phenomenon of trypsin pro-
tease (gene name PRSS; https://​www.​genome.​jp/​entry/​
hsa:​5644+​hsa:​5645+​hsa:​5646) and hydrolase enzyme 
(EC no. 3.4.21.4, www.​brenda-​enzym​es.​org) which are 
responsible for breakdown of peptides and related com-
pounds (KEGG database at (http://​www.​genome.​jp/​
kegg, Fig.  1). Cocoonase (synonym to trypsin, https://​
www.​brenda-​enzym​es.​org/​enzyme.​php?​ecno=3.​4.​21.4#​
SYNON​YM) is a naturally occurring enzyme that is func-
tionally similar to trypsin. Cocoonase was first described 
in moths and is present as a single-copy gene [16]. How-
ever, recent work has identified multiple cocoonase 
duplication events in the Heliconius melpomene genome, 
resulting in at least five duplicates of recent origin [16].

Cocoonase enzyme is also well known as serine-trypsin 
protease or trypsin-like protease enzyme. Both enzymes 
are grouped in protease category and catalyze the break-
ing of peptide bonds and functionally defined with EC 
no. 3.4.21.4. The cocoonase gene coding sequence was 
unraveled gradually [17, 18], and its application in deg-
umming has been also reported [19–25]. The boiling 
of cocoon in water dissolves sericin protein [26], and 
continuous raw silk filament is reeled and the whole 
process is known as silk degumming. Also, usage of 
chemical methods in Industrial Avenue for silk degum-
ming of cocoons is commonly rampant. However, the 
usage of chemicals like soda, soap, detergents, alkaline, 
and alkali solution affects both sericin and fibroin, thus 
hampering the properties of tasar silk-like natural color, 
texture, and softness [27–29].

Therefore, it is expected that enzymatic cocoon deg-
umming will be beneficial and may help to retain natu-
ral color, texture, and softness of tasar silk. Additionally, 
enzymatic methods have other advantages also as it is 

Fig. 1  Metabolic pathway of trypsin (EC 3.4.21.4) (synonym of cocoonase) in protein digestion and absorption (KEGG database at http://​www.​
genome.​jp/​kegg updated 28th Aug 2020)
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economical, eco-friendly, and biodegradable [30]. Hydro-
lyzing activity of cocoonase [31, 32] on sericin is simi-
lar as of trypsin. A study elucidating present and future 
perspective of cocoonase enzyme and its possible role 
in textile industry has been published [28]. Gene edit-
ing technique like CRISPR/Cas9-based Bombyx mori 
cocoonase gene editing has been the first experimental 
and phenotypic evidence showing that cocoonase is a 
cocoon breaking determining factor [33]. Using tran-
scriptomic and genomic data heliconiine cocoonase 
gene expression across additional tissues, reconstruct-
ing their phylogenetic relationships, and examining the 
rates of gene duplication and deletion have already been 
described [34].

However, there is no detailed information available 
about cocoonase gene from A. mylitta silkworm. Fur-
thermore, utilizing cocoonase-based degumming of 
cocoon strategy requires other information like ample 
production of cocoonase and its concentration-based 
degumming activity. Therefore, in present study, an effort 
has been made to find cocoonase gene and its charac-
terization. Here, RNA was isolated from A. mylitta head 
region and gene amplification, and molecular study on 
the cocoonase gene from A. mylitta has been described. 
Furthermore, characterization of the coding nucleo-
tide sequences predicting the tertiary and quaternary 
structure [35, 36] along with interaction of potential 
ligands focused on the active site residues of putative 
cocoonase protein of A. mylitta (AmCoc) has been done. 
The obtained findings infer the presence of cocoonase 
enzyme in the wild silkworm, A. mylitta. Gained infor-
mation from present study can be utilized for the produc-
tion of recombinant cocoonase and cocoon degumming.

Methods
Natural habitat of Antheraea mylitta and sample collection
Antheraea mylitta Drury, tasar silkworm, is a wild seri-
cigenous, polyphagous insect spread in different geo-
graphical zones in India [37]. Tasar silkworm late pupa 
(Fig. 2 a–b) and cocoon samples (Fig. 2 c–d) of A. mylitta 
Drury, feed on Terminalia tomentosa and Shorea robusta 
[38], were collected from natural habitat of Central Tasar 
Research and Training Institute, Ranchi, India. Fifth lar-
val stage is the perfect stage to produce cocoonase in 
maximum. The A. mylita Drury cocoon research sam-
ples were kindly provided by Dr. J. P. Pandey (scientist 
D, CTR &TI, Ranchi, India). CTR&TI is the flagship 
research institute catering to the R&D need of tropical 
and temperate (oak) tasar sectors. Late pupal stage sam-
ples of 125 days old were selected for RNA isolation from 
brain tissues (Fig. 2 e–f) via TRIzol® extraction protocol 
[39]. The Antheraea mylitta pupa samples were disin-
fected using 70% ethanol and dissected under sterilized 

condition. Dissected pupa head (anterior portion) was 
subjected for RNA isolation.

Retrieval of cocoonase gene sequence and primer 
designing
The hydrolysis of sericin protein is catalyzed by 
cocoonase enzyme; therefore, in NCBI database, 
cocoonase entry was searched, and its sequence from 
Antheraea pernyi strain was retrieved (NCBI accession 
no. gi|295,682,679|). The above sequence was submit-
ted to tblastn for getting its coding sequence (GenBank: 
ADG26770.1). Four sets of primers (including forward 
and reverse) were obtained using online primer designing 
tool (Primer3) with optimized parameters such as GC%, 
length of primer, and amplicon size. List of primer sets 
used in PCR amplification has been shown in Table  1, 
as A. mylita and A. pernyi wild silk moth belongs to the 
same genus. Therefore, cocoonase protein sequence 
(ADG26770.1) was selected as template for primer 
designing.

PCR amplification and sequencing
Four sets of gene-specific primers were used for PCR 
amplification following the PCR preparations of 
TaKaRa™. PCR amplification was performed in a final 
volume of 12.5 μL containing cDNA (150 ng), 10 pmol of 
the each primers, mixture of dNTPs (Sigma) having con-
centration of 250  μM, 10 × Taq Polymerase Buffer, and 
0.625 U of Taq DNA polymerase (TaKaRa™). The reaction 
conditions for PCR set up were as follows: an initial dena-
turation step at 95 °C for 1 min, 35 amplification cycles of 
denaturation at 95 °C for 30 s, annealing at 49 °C for 30 s, 
and primer extension at 72 °C for 90 s, followed by a final 
extension at 72 °C for 10 min with TaKaRa PCR thermal 
cycler Dice (Thermo Fisher Scientific, USA). The primer 
set which gave single band amplification with cDNA was 
selected, and amplified PCR product was submitted for 
sequencing to Chromous Biotech, Bangalore, India.

Physicochemical characterization
Primary sequence analysis was performed by calculat-
ing the physicochemical properties of retrieved protein 
sequences which include isoelectric point (pI), molecular 
weight (MW), instability index (II), aliphatic index (AI), 
and GRAVY or grand average of hydropathicities by using 
ExPASY-ProtParam tool (http://​web.​expasy.​org/​protp​
aram/) [40]. The secondary structural features (like helix, 
turn, sheet, coil, etc.) were predicted by SOPMA (http://​
npsa-​pbil.​ibcp.​fr/​cgi-​bin/​npsa_​autom​at.​pl?​page=/​NPSA/​
npsa_​sopma.​html) [41] and CFSSP: Chou and Fasman 
Secondary Structure Prediction server (http://​cho-​fas.​
sourc​eforge.​net/), [42, 43]. The PredSL (http://​aias.​biol.​
uoa.​gr/​PredSL/) [44] and PredictProtein (https://​predi​

http://web.expasy.org/protparam/
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ctpro​tein.​org/) [45] were used to predict subcellular 
location of the derived target protein. Protein dynamics 
information is also important for understanding protein 
function. DynaMine web server quickly produces profile 
describing statistical potential for fast backbone protein 
movements directly from amino acid sequence available 
at http://​dynam​ine.​ibsqu​are.​be/ [46].

Modeling and structural and functional analysis
3D protein structure of AmCoc was determined by 
QUARK and I-TASSER server, https://​zhang​lab.​dcmb.​
med.​umich.​edu/I-​TASSER/ [47, 48]. The stereo-chem-
ical quality assessment of predicted protein structure 

was performed by PROCHEK [49–52], RAMPAGE [47, 
53, 54], and UCLA-DOE LAB SAVES server (http://​
servi​ces.​mbi.​ucla.​edu/​SAVES/). Potential deviations 
and structural alignment were calculated with TM-
align web server [55] (https://​zhang​group.​org/​TM-​
align/) for root-mean-square deviation (RMSD). The 
potential errors were checked in predicted tertiary 
protein model, while z-score value was calculated and 
compared with target template by ProSA-web tool [56] 
(https://​prosa.​servi​ces.​came.​sbg.​ac.​at/​prosa.​php). This 
displays overall quality and if the input structure lies 
within the score range for the native proteins of similar 
size [24, 57].

Fig. 2  Antheraea mylitta. a 2nd instar larva stage feeding on T. tomentosa, b 4th larvae stage in natural habitat, c and d Antheraea mylitta cocoons 
on the Terminalia tomentosa in natural environment, e 5th instar pupa sample, and f dissection of 5.th instar pupa sample for RNA isolation

https://predictprotein.org/
http://dynamine.ibsquare.be/
https://zhanglab.dcmb.med.umich.edu/I-TASSER/
https://zhanglab.dcmb.med.umich.edu/I-TASSER/
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https://zhanggroup.org/TM-align/
https://zhanggroup.org/TM-align/
https://prosa.services.came.sbg.ac.at/prosa.php
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Sequence annotation and NCBI submission
PCR amplified and obtained cocoonase sequence was 
analyzed by various computational and web-based 
online tools. DNA TIS Miner tool [58] (available at 
http://​dnafs​miner.​bic.​nus.​edu.​sg/) was used for find-
ing start codons and ORF finder tool (http://​www.​
bioin​forma​tics.​org/​sms2/​orf_​find.​html) for determin-
ing ORFs in the cocoonase sequence. The number of 
exons, exon position, and exon was predicted by Gene-
Wise tool. Conserved domain tool available at https://​
www.​ncbi.​nlm.​nih.​gov/​Struc​ture/​cdd/​cdd.​shtml [59–
61] reports the functional motifs [62] location and was 
used to predict the presence of conserve domain in 
predicted protein model of cocoonase (KM388539.1). 
Moreover, protein domain and domain architecture 
were analyzed with SMART tool [63] (http://​smart.​
embl-​heide​lberg.​de/), and the presence of motif was 
performed using MEME tool (https://​meme-​suite.​org/​
meme/​tools/​meme). Structural Classification of Pro-
teins (SCOP) available at http://​scop.​mrc-​lmb.​cam.​
ac.​uk/​scop/ provides comprehensive structural and 
evolutionary relationships between all proteins whose 
structure is known [64, 65].

BLAST against Antheraea mylitta genome
Obtained cocoonase sequence (KM388539.1) was sub-
jected to NCBI blast (https://​www.​ncbi.​nlm.​nih.​gov/) 
against A. mylitta GenBank assembly GCA_014332785.1 
(AM_v1.0).

Results
Details of silkworm late pupa (Fig. 2 a–b), cocoon sam-
ples (Fig. 2 c–d), fifth instar larva of A. mylitta (Fig. 2e) 
moth, and sampling of brain tissues for RNA isolation 

(Fig.  2f ) have been depicted. PCR amplification with 
gene-specific primer and optimization in respect to 
annealing temperature, number of cycles, and concentra-
tion of the template DNA was performed. The PCR ther-
mal profile cycle was maintained as follows: 95 °C, 1 min; 
95 °C, 30 s; 49 °C, 30 s; 72 °C, 90 s; and 72 °C, 10 min for 
35 cycles with ApCoc4 primer set. Amplified PCR prod-
uct (amplicon size ~ 500  bp) of A. mylitta with primer 
ApCoc4 was submitted for sequencing (Fig. 3). Obtained 
nucleotide sequences of A. mylitta were subsequently 
analyzed, assembled, and annotated. Following sequence 
assembly, a new sequence of AmCoc (377 bp) was con-
structed. Newly constructed AmCoc nucleotide sequence 
was checked for the similarity using BLAST with A. 
pernyi cocoonase gene reported in NCBI database 
(ADG267710.1) and was found to be identical (query 
coverage — 11%; maximum identity 97%). The predicted 
gene constitutes 1 exon with 48% GC content having 122 
amino acids in translated protein sequence as explained 
by GeneWise algorithm (Table 2). DNA TIS Miner tool-
based analysis for finding translation initiation sites (TIS) 
total 4 positions was found. But as per ORF finding tool, 
at nucleotide position 253, it can be confirmed that gene 
may start with an open reading frame, and ORF is shown 
in red-colored font (Table 3). Phylogenetic tree was con-
structed with new sequence with GenBank ID > gi|731,51
6,038|gb|KM388539.1| UNVERIFIED: Antheraea mylitta 
genomic KM388539.1 (Table 4), showed that it is closely 
related to A. pernyi strain qing_6 cocoonase-like pro-
tein mRNA sequence (GenBank ID HM011050.1, Fig. 4). 
Cooconase gene NCBI blast result shows that sequences 
are matched with A. mylitta isolate AMDABA2020 scaf-
fold18_size7685921 and whole genome shotgun sequence 
(Supplementary Fig. S1) showing only 2 matches with A. 

Table 1  Primer sets procured from Xcelris, India

Name Primers Annealing 
temp. (°C)

Amplicon 
size (bp)

ApCoc1 TAC​TAT​TGG​CTT​GTG​CCA​TTTTT 
(Forward)

49.6 769

ATA​TAC​ACC​AGG​GTT​TCC​AGGAC 
(Reverse)

ApCoc2 AGT​CAA​AGA​ACG​AAT​GAT​GTT​GGG​ 
(Forward)

50.5 686

CGG​AGT​GCT​GTG​ACA​TTT​GC (Reverse)

ApCoc3 ACT​ATT​GGC​TTG​TGC​CAT​TTTT 
(Forward)

48.5 746

GTA​TCC​AAC​CAC​GGA​GTG​TC (Reverse)

ApCoc4 TTT​ACT​ATT​GGC​TTG​TGC​CATTT 
(Forward)

45.8 771

TTT​TAA​ACT​CCT​GCA​GTC​TTTCG 
(Reverse)

Fig. 3  M, marker, DNA samples amplified with ApCoc4 primer in 
replicates (amplicon size ~ 500 bp) in L1 and L2

http://dnafsminer.bic.nus.edu.sg/
http://www.bioinformatics.org/sms2/orf_find.html
http://www.bioinformatics.org/sms2/orf_find.html
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
https://meme-suite.org/meme/tools/meme
https://meme-suite.org/meme/tools/meme
http://scop.mrc-lmb.cam.ac.uk/scop/
http://scop.mrc-lmb.cam.ac.uk/scop/
https://www.ncbi.nlm.nih.gov/
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mylitta isolate AMDABA2020 scaffold18_size7685921 
(Supplementary Fig. S2). Smith et  al. [16] has reported 
that cocoonase gene is a single-copy gene in several but-
terfly and moth genomes (the silk moth Bombyx mori, 
diamond backed moth Plutella xylostella and monarch 
butterfly Danaus plexippus, and the Glanville fritillary 
(Melitaea cinxia). It needs to mention that cocoonase 
protease activity might be comparable with trypsin pro-
tease enzyme activity, because both the abovementioned 
proteases are enrolled with identical Enzyme Commis-
sion number (EC 3.4.21.4), and also, trypsin is synonym 
to cocoonase.

AmCoc physicochemical parameters were derived 
using ProtParam tool (Table  5) that corresponds with 
124 amino acid residues, molecular weight of 14.681 kDa, 
and computed pI of 10.97. The deduced amino acid 
sequence contains 7 negatively charged (− R, Asp + Glu) 
and 25 positively charged (+ R, Arg + Lys) amino acid 
residues. The value of instability index, aliphatic index, 
and grand average of hydropathicity (GRAVY) was 53.44, 
59.59, and − 0.733, respectively. The highest frequency of 
amino acids in the sequence is arginine (12.3%), alanine 
(10.3%), followed by proline (9.5%). The secondary struc-
ture prediction of AmCoc sequence is shown in Fig.  5 
and Supplementary Fig. S3. Helix, sheet, and turn (59%, 
54.9%, and 19.7%, respectively) as secondary structures 
were predicted by Chou–Fasman web server. Subcellular 

location of the derived protein was determined by the 
PredictProtein (Fig.  6), while using PredSL tools, it was 
observed that it is a mitochondrial protein. The stability 
of the derived amino acid sequence was determined by 
DynaMine web server exhibiting that maximum amino 
acid residues lay in the rigid area (Fig. 7).

The 3D model of A. mylitta cocoonase protein 
(KM388539.1) was predicted by QUARK and I-TASSER 
servers and viewed by PyMol (Fig.  8a). Helices and 
loops were colored in cyan and magenta, respectively. 
The best predicted protein structure was selected based 
on TM score (0.3461). Furthermore, structural valida-
tion and quality assessment of the model were carried 
out using various tools such as PROCHEK, RMSD, 
RAMPAGE, and z-score. Ramachandran plot-based 
analysis showed that 70.3% of residues were in the most 
favored region, 19.7% in the allowed region, while 2% 
in the disallowed region (Fig. 8b). Also, SAVES ERRAT 
(78%) and z-score for the AmCoc-predicted protein 
structure was found to be − 4.92 (Fig. 9). The structural 
alignment was performed with TM-align tool between 
AmCoc-predicted protein structure and ApCoc-
predicted structure showing the RMSD = 5.68A and 
viewed in PyMol (Fig.  10). Moreover, protein domain 
and domain architecture were analyzed with SMART 
tool (http://​smart.​embl-​heide​lberg.​de/, 41), and trans-
lated AmCoc protein belonged to a distinct SCOP 
superfamily d1kypa. The deduced amino acid of A. 
mylitta cocoonase sequence comprised of two motifs 
which are determined by MEME tool suite (Supple-
mentary Fig. S4). Obtained results indicated that con-
served domains of deduced amino acid sequence of 
cocoonase (Fig. 11) were a trypsin-like serine protease 
having active site from 75 to 200 query sequence and 
substrate binding site from 210 to 225 query sequences 
in NCBI. Both the motifs belong to trypsin-like serine 
protease, and cocoonase-like protein has been inferred 
as a conserved domain (cd00190) at the positions of 

Table 2  Prediction of exon, exon position, exon range, exon length, and GC content by GeneWise tool

Gene Exon Strand Exon type Exon range Exon length GC content

1 1  +  Initial 1–375 375 48%

Table 3  Prediction of start codon, score, position, and Kozak 
consensus sequence by DNA TIS miner

No. of ATG’s
from 5′ end?

Score Position (bp) Kozak 
consensus 
[AG]XXATGG​

4 0.755 253 AXXATGC​

3 0.664 55 GXXATGA​

2 0.506 188 GXXATGC​

1 0.356 58 GXXATGC​

Table 4  Antheraea mylitta cocoonase (AmCoc) nucleotide sequence deposited in NCBI

 > KM388539.1 UNVERIFIED: Antheraea mylitta genomic sequence
TCT​ATT​GGC​TTG​TGC​CAT​TTT​TTT​CTA​TTG​GCT​TGT​GCC​ATT​TTT​AAC​AGC​AGA​TGA​TGC​TCG​TAT​TTC​GCG​CCA​GTT​TTT​CAA​GCC​CGG​CGG​AAA​AGG​GCC​GGG​GAA​
CAG​GGG​ACC​GAA​TTT​TTC​CAC​CGC​ACG​GTC​AGT​AAA​AGG​CCG​ACG​GAA​AAA​TTT​CAC​TTC​CAC​CAC​CAC​CGC​ATC​GAT​GCG​CCC​CTT​GAG​ATA​AAA​AAA​AAA​AGG​
CAT​CTT​GCC​GGG​GCC​TAA​CTT​ATC​AAT​AGA​AGG​AAA​ATG​CTT​TGC​CGA​ATT​TTT​CCG​CAA​AAC​AGA​AAA​AAC​CCC​GGG​GCA​TAT​ATT​CCC​GGC​AAC​CGG​CAA​ATC​CCC​
AAG​TAC​CCA​AAA​AAC​GAC​GGC​GAA​TTC​CGG​CCA​CCA​CCC​CGG​GGT​TGG​ACA​AA

http://smart.embl-heidelberg.de/
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56–76 and 84–104 and each of 20 amino acid in length. 
Detailed comparative modeling and protein structure 
analysis have been performed to infer functional (and 
perhaps adaptive) differences of heliconiine cocoonase 
compared with the single-copy moth cocoonase [34].

Discussion
Cocoonase is a very important protease enzyme respon-
sible for hydrolyzing sericin of silk cocoon. A study using 
bioinformatics tools has been published showing that 

cocoonase is specific to Lepidoptera, and also, it existed 
before the occurrence of lepidopteran insects spin-
ning cocoons [33]. The primary structure of cocoonase 
revealed about amino acid sequence arrangement, while 
secondary and tertiary structure of the protein illustrates 
the enzymatic function in-depth. The first attempt of 
the present study was to characterize a novel cocoonase 
gene amplified from cDNA of A. mylitta brain tissues 
using computational approaches. PCR amplification was 
obtained with primer set ApCoc4 (Table 1), and obtained 
amplified product was subsequently sequenced (Fig.  3). 
Sequence alignment [66, 67], phylogenetic analysis, 
motif identification, functional annotation, and struc-
ture analysis by homology modeling [68], elucidated that 
AmCoc shows similarity to proteases from other sericig-
enous insects such as A. pernyi and B. mori. The annota-
tion of the newly constructed sequence AmCoc (377 bp) 
was used to search the presence of the serine protease 
domain, cd00190, using SMART tool. Also, modeling-
based data of 30 individual cocoonases indicated that all 
the cocoonase enzymes have trypsin-like specificity, and 
also, significant differences were noticed among the sur-
face residues of different cocoonase types which suggest 
that cocoonase enzyme shows varying adaptation to dif-
ferent chemical environments [34].

Finding ORF and translation initiation sites is impor-
tant for understanding their key role and predicting the 

Fig. 4  Phylogenetic tree constructed with AmCoc (accession no.KM388539.1) and enlisted nucleotide cocoonase sequences from homologues

Table 5  Physicochemical parameter of cocoonase computed by 
ProtParam tool

Physicochemical properties Cocoonase
(KM 
KM388539.1; 
A. mylitta)

Number of amino acid residues 124

Theoretical pI 10.97

Instability index 53.44

Aliphatic index 59.59

Grand average of hydropathicity (GRAVY)  − 0.733

 − R (Asp + Glu) 7

 + R (Arg + Lys) 25
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coding region in newly constructed sequence. Gene pre-
diction was performed with GeneWise tool which shows 
exon positions, exon range, and length to a genomic 
DNA sequence [69] and listed in Table  2. Relatedness 

and distinction among linked genetic sequences have 
been explained by sequence alignment and represented 
pictorially in phylogenetic tree, defining an evolution-
ary descent of distinct species, organisms, or genus from 
a common ancestor [70, 71]. In the current study, phy-
logenetic analysis revealed that the obtained cocoonase 
sequence from A. mylitta (accession no. KM388539.1) 
belongs to the same clade of A. pernyi (ADG267710.1) 
and evolutionary related as shown in Fig. 4. PredictPro-
tein and PredSL analysis showed that the target protein, 
A. mylitta cocoonase enzyme from head portion, is mito-
chondrial protein and possesses signal peptide [72, 73] 
(Fig. 6).

I-TASSER hierarchical protocol was used for auto-
mated protein structure prediction and structure-based 
function annotation that predicts and infers the second-
ary and tertiary structures, structural and functional 
annotations, ligand-binding sites, active sites, enzyme 
commission, and gene ontology terms [65]. The scale 
of accuracy for the predictions is based on confidence 

Fig. 5  Secondary structure of AmCoc

Fig. 6  Subcellular localization of AmCoc mitochondrial protein 
predicted by PredictProtein tool
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score (C-score) of the protein model, TM score (scale 
for measuring the structural similarity between two pro-
tein structures), and RMSD value (average distance of 
all residue pairs) [47, 74] as shown in Fig.  8. The struc-
tural alignment was performed between A. mylitta 
cocoonase predicted structure and A. pernyi cocoonase 
protein structure showing RMSD value = 5.68A and 
viewed in PyMol (Fig.  10). The RMSD superimposition 
value indicated that there is similarity among the target 
(AmCoc) and the template structure (ApCoc). A. mylitta 
cocoonase close structural similarity with the template 
cocoonase from A. pernyi (Fig. 10) suggests that there is 
a functional similarity with cocoonase from A. mylitta 
(RMSD = 5.68A, viewed in PyMol) 

 Cocoonase gene isolated from head region, char-
acterization and its analysis in silk degumming have 
not been reported in Antheraea sp.; however, there 
are previous reports about the presence of cocoonase 
enzyme in B. mori silk moth (domestic) and A. pernyi 
(wild) and its role in silk degumming. Through in 
silico predictions, AmCoc-derived cocoonase gene 

sequence showed similarity with template sequence, 
and the presence of conserved domain and motif has 
been observed which belongs to trypsin-specific fam-
ily (Fig.  11). Prediction of protein functions using 3D 
structure information, enzyme commission num-
ber, and ligand binding sites has been described using 
COFACTOR [75]. COFACTOR tool-based analysis 
of cocoonase  protein predicted a template of PDB ID: 
3cskA with EC number 3.4.14.4 (dipeptidyl-peptidase 
III belonging to hydrolase) and active site residues [6, 
15, 43, 53, 54, 76]. Similar type prediction has also been 
described using  B. mori  cocoonase sequence [65]. The 
functional difference of enzyme isoforms was calcu-
lated using DEEPre tool based on enzyme EC number 
prediction by deep learning method (Supplementary 
Fig. S5). Domain and motif identification in protein is 
a vital step for better understanding of structural and 
functional inference of predicted protein [18, 77].

A detailed study on the genetic analysis of Indian tasar 
silk moth (A. mylitta) populations has been published 
[78]. However, no detailed information is available for A. 

Fig. 7  Prediction of dynamic nature of AmCoc protein using DynaMine server: our results showed that the most of regions of AmCoc are rigid, and 
there are only nine flexible regions with the lowest predicted S2 value which are Phe115 (0.57), Arg116 (0.58, Pro117 (0.56), Pro118 (0.53), Pro119 
(0.51), Gly121 (0.46), Trp122 (0.41), and Thr123 (0.43)

Fig. 8  Predicted 3D model (I-TASSER) of a AmCoc encoded protein where α-helices are shown in cyan color and coils are in magenta. b 
Ramachandran plot (between φ-ψ torsion angles) of the predicted protein is shown where the cream areas correspond to sterically disallowed 
regions except glycine, red and brown areas correspond to sterically allowed regions for alpha-helical and beta-sheet conformations, and yellow 
areas correspond to allowed regions for the left-handed alpha-helix (A right-handed alpha-helix, B beta-sheet, and L left-handed alpha helix)

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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mylitta cocoonase gene. Furthermore, the study about 
the cocoonase gene structure, copy number, chromosome 
location and its expression patterns, etc. in A. mylitta is 
of great significance. Here, cocoonase gene sequence 
was subjected to NCBI blast against GenBank assembly 
Antheraea mylitta—GCA_014332785.1 (AM_v1.0) indi-
cated the matching of sequences with A. mylitta isolate 
AMDABA2020 scaffold18_size7685921 whole genome 
shotgun sequence (Supplementary Fig. S1) having 2 
matches only (Supplementary Fig. S2), although six copies 
of cocoonase has been reported in Heliconius melpomene 
and copy number varies across H. melpomene subpopu-
lation [16]. Also, a detailed list about the copy number 
variation in cocoonase genes across 18 individuals of 
four Heliconius melpomene (Hm) subspecies has been 
elaborated [34]. Nowadays, the gene editing technologies 
are also being used to unravel the functionality of vari-
ous genes. Recently, gene editing technique like CRISPR/
Cas9 has been used to knock out  cocoonase  in the silk-
worm  B. mori  [33]. Detailed cocoonase gene expression 

analysis has not been performed in the present study, 
although PCR-based cocoonase gene amplification was 
seen in brain tissue only (Fig.  3). Detailed study about 
mRNA expression levels of cocoonases across multiple 
H. melpomene tissues (like mouth parts, antennae, head, 
and legs) has been described where high expression levels 
were indicative of an important function for cocoonase 3 
and cocoonase 4 in the mouth part tissues [34].

Conclusion
In summary, the present study describes about the iso-
lation of RNA, cDNA preparation, PCR-based ampli-
fication, sequencing, and identification of cocoonase 
gene from head region of A. mylitta. Annotation 
resulted to the newly constructed cocoonase (AmCoc) 
sequence of 377 bp only. Phylogenetic analysis of ApCoc 
and AmCoc revealed their evolutionary relationship 
between different species. NCBI blast against Gen-
Bank assembly Antheraea mylitta—GCA_014332785.1 
(AM_v1.0) indicated the matching of sequences with A. 

Fig. 9  (a) ProSA-web z-scores of all protein chains in PDB determined by X-ray crystallography (light blue) or NMR spectroscopy (dark blue) with 
respect to amino acid chain length. The z-scores of AmCoc is highlighted as large dots Z-score for template protein structure–AmCoc -4.92; (b) 
SAVES ERRAT graph of AmCoc; (c) Energy plot of AmCoc
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mylitta isolate AMDABA2020 scaffold18_size7685921 
whole genome shotgun sequence. Secondary structure 
as well as 3D structure prediction of AmCoc cocoonase 
disclosed the detailed atomic structure, while I-TASSER 

predicted the most stable structure. AmCoc proteins 
were searched in PDB for predicting their structural 
closeness to the target in the PDB (3cskA) and active 
sites [6, 15, 43, 53, 54, 76]. EC predictions revealed that 

Fig. 10  a Superimposed three-dimensional structure model of template ApCoc (red) and target AmCoc (blue). b Pairwise alignment for ApCoc 
protein sequence and ApCoc protein sequence with ClustalW

Fig. 11  The conserve domain identification of cocoonase by NCBI Conserved Domain Database
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AmCoc cocoonase (dipeptidyl-peptidase III belonging 
to hydrolase) has EC number 3.4.14.4. Furthermore, 
AmCoc enzyme is a mitochondrial protein, which pos-
sesses signal peptide and serine protease domain. The 
present study broadens our knowledge about A. mylitta 
cocoonase (AmCoc) characteristics which may be help-
ful in further elucidating its full gene sequences and 
encoding protein. Obtained findings may further be 
utilized to add economical value of silk by altering the 
degumming process of cocoon and thereby retaining 
the texture and color of silk.
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