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Abstract 

Background:  Among the most common causes of invasive aspergillosis and acute bronchopulmonary aspergillosis 
is Aspergillus fumigatus. Transmission with A. fumigatus produces aggressive aspergillosis in allogeneic haematopoietic 
stem cell transplant recipients, HIV patients, and cancer patients. Asthmatics and cystic fibrosis patients are allergic to 
A. fumigatus. MHC class-II binding epitopes can initiate immunogenic responses in patients. In this study, we deployed 
immunoinformatic study to reveal epitopes from fungal proteins.

Results:  In modern research, we found multiple epitopes ITLKLLHRYSYKLAG, KLVLRAFPNHFRGDS, RYSYKLAGVN-
QVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD from crucial proteins of A. fumigatus 5,8-linoleate diol synthase 
(ACO55067.2) and ChainB-chitinase A1 (2XVN_B). RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVN-
QVD epitopes interact with HLA-DRB01_0101, while ITLKLLHRYSYKLAG and KLVLRAFPNHFRGDS epitopes interact 
with HLA-DRB01_1501. Molecular docking analysis reveals atomic contact energy (ACE) value for these five epitopes 
shown below −5 Kcal/mol in docked state.

Conclusions:  The invasive aspergillosis and acute bronchopulmonary aspergillosis are caused by harmful fungal 
pathogen Aspergillus fumigatus. Our modern immunoinformatic research shows ITLKLLHRYSYKLAG, KLVLRAFPN-
HFRGDS, RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, and LHRYSYKLAGVNQVD epitopes could bind to MHC-II HLA 
allelic determinants and can initiate immunogenic response in patients affected by Aspergillus fumigatus.
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Background
Immunizing the immunosuppressed population vul-
nerable to opportunistic infections like aspergillosis 
may appear challenging; however, that could be consid-
ered as a first step and as the least immunosuppressed, 
most worthy prospects, including such granulomatous 
patients, living donor applicants before graft, leukaemic 
after effective initial treatment, solid tumour patients at 
diagnostic test, and healthcare workers with aspergil-
losis [1]. The far more frequent microbe fungal diseases 

are Aspergillus spp. Among the most common causes 
of invasive aspergillosis and acute bronchopulmonary 
aspergillosis is Aspergillus fumigatus [2]. Transmission 
with A. fumigatus produces aggressive aspergillosis in 
allogeneic hematopoietic stem cell transplant recipients, 
HIV patients, and cancer patients. Asthmatics and cystic 
fibrosis patients are allergic to A. fumigatus [3, 4]. In indi-
viduals with atopic asthma or cystic fibrosis, allergy is 
caused by a hypersensitivity response to Aspergillus aller-
gens. When compared to other fungal allergens, diseases 
related with A. fumigatus allergens are on the rise, and it 
also complicates life-threatening infections in immuno-
compromised individuals such as cancer patients, HIV 
patients, and organ transplant recipients [5].
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Only a few drugs (such as voriconazole and ampho-
tericin B) are now available to treat this invasive con-
dition, and even these have restrictions owing to 
potential risks, and so, these drugs hold longer duration 
of treatment with side effects [6], so we tried to explore 
more best possible options of epitopes by deploying 
approaches of immunoinformatics. In current study, we 
targeted variety of proteins from A. fumigatus to screen 
out immunogenic T-cell epitopes against A. fumigatus 

fungi. In Fig. 1, detailed stepwise outline of epitope-based 
vaccine prediction strategies is provided.

Methods
Screening of epitopes from proteome of A. fumigatus
Protein database like NCBI GenBank, EMBL, and DDBJ 
was deployed for checking proteins of A. fumigatus with 
various accession numbers/GenBank ID. Proteins of A. 
fumigatus fungi under consideration were enlisted in 
Table 1.

Allergenicity and antigenicity prediction of proteins
AllergenFP tool [7] was deployed for prediction aller-
genicity on the basis of Tanimoto similarity index; also, 
VaxiJen ver.2.0 tool [8] was used for prediction of anti-
genicity of epitopes of proteins after successful epitopes 
screening.

Epitope screening from proteins of A. fumigatus
Epitopes were screened by using NetMHCIIpan ver.3.2 
server [9, 10], which screens epitopes from proteins of 
A. fumigatus via ANN algorithms. Also, affinity scores 
assisted in predicting binding of these epitopes to MHC-
II allelic determinants. MHC-II HLA determinants were 
screened by using IEDB database.

Physiochemical properties analysis
All properties of screened epitopes were determined by 
using ExPASy tools like ProtParam, which assisted us in 

Fig. 1  Flow chart of epitope-based vaccine prediction against A. 
fumigatus 

Table 1  Proteins of A. fumigatus with accession number

a aa amino acids

S. no. Protein name (no. of amino acids) GenBank accession no.

1 Beta-tubulin (62 aaa) AOH95126.1

2 r-ASP-4 (286 aa) CAA04959.1

3 ChainB-chitinase A1 (309 aaa) 2XVN_B

4 1,4-glucan branching enzyme (56 aaa) AAY83208.1

5 5,8-linoleate diol synthase (1079 aaa) ACO55067.2

Table 2  Allergenicity of core proteins of A. fumigatus with 
Tanimoto similarity index

S. no. Protein name Tanimoto similarity 
index (Allergenicity)

1 Beta-tubulin 0.79 (non-allergen)

2 r-ASP-4 1.0 (allergen)

3 ChainB-chitinase A1 0.8 (non-allergen)

4 1,4-glucan branching enzyme 0.74 (non-allergen)

5 5,8-linoleate diol synthase 0.83 (non-allergen)
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finding isoelectric point (pI), GRAVY score, instability 
score, half-life and molecular weight, etc. [11].

Epitope structure prediction
Many latest tools like I-TASSER [12], SWISS-PROT [13], 
PEP-FOLD ver.3.5 [14], and Phyre2.0 [15] tools were used 
for 3D structure prediction of proteins.

Table 3  NetMHCIIpan 3.2 scores for HLA-DRB01_0101

S. no. Protein 
GenBank_ID

Epitope DRB1_0101

1-log50k nM Rank

1 pdb_2XVN_B VPERKFYL-
SAAPQCI

0.793 9.41 0.4

2 pdb_2XVN_B PERKFYLSAAPQCII 0.824 6.74 0.09

3 pdb_2XVN_B ERKFYLSAAPQCIIP 0.827 6.52 0.07

4 pdb_2XVN_B RKFYLSAAPQCI-
IPD

0.821 6.94 0.1

5 pdb_2XVN_B KFYLSAAPQCI-
IPDA

0.787 10.07 0.5

6 ACO55067.2 LHVPTVFRSIEALGI 0.796 9.12 0.4

7 ACO55067.2 HVPTVFRSIEALGIQ 0.821 6.91 0.1

8 ACO55067.2 VPTVFRSIEALGIQQ 0.828 6.41 0.06

9 ACO55067.2 PTVFRSIEAL-
GIQQA

0.834 6.05 0.05

10 ACO55067.2 TVFRSIEAL-
GIQQAR

0.833 6.11 0.05

11 ACO55067.2 VFRSIEALGIQQARS 0.816 7.3 0.15

12 ACO55067.2 GLCTNFTISRAILSD 0.767 12.49 1

13 ACO55067.2 LCTNFTISRAILSDA 0.788 9.87 0.5

14 ACO55067.2 CTNFTISRAILSDAV 0.792 9.45 0.4

15 ACO55067.2 TNFTISRAILSDAVA 0.792 9.53 0.4

16 ACO55067.2 NFTISRAILSDAVAL 0.77 12.08 0.9

17 ACO55067.2 LHRYSYKLAGVN-
QVD

0.78 10.82 0.7

18 ACO55067.2 HRYSYKLAGVN-
QVDV

0.803 8.43 0.25

19 ACO55067.2 RYSYKLAGVN-
QVDVV

0.812 7.68 0.17

20 ACO55067.2 YSYKLAGVN-
QVDVVR

0.789 9.78 0.5

21 ACO55067.2 DIGKSFEL-
NQAARAV

0.792 9.53 0.4

22 ACO55067.2 IGKSFELNQAAR-
AVT

0.805 8.23 0.25

23 ACO55067.2 GKSFELNQAARA-
VTQ

0.805 8.23 0.25

24 ACO55067.2 KSFELNQAARA-
VTQQ

0.798 8.93 0.3

25 ACO55067.2 AKTGFIAN-
LVNSLHR

0.788 9.94 0.5

26 ACO55067.2 KTGFIANLVNSL-
HRH

0.793 9.42 0.4

27 ACO55067.2 TGFIANLVNSL-
HRHD

0.774 11.5 0.8

Table 4  NetMHCIIpan 3.2 scores for HLA-DRB01_1501

S. no. Protein 
GenBank_ID

Epitope DRB1_1501

1-log50k nM Rank

1 ACO55067.2 GVVLIMFNRFH-
NYVV

0.66 39.47 0.8

2 ACO55067.2 VVLIMFNRFHNY-
VVE

0.661 39.34 0.7

3 ACO55067.2 VLIMFNRFHNYV-
VEK

0.667 36.78 0.6

4 ACO55067.2 LIMFNRFHNYV-
VEKL

0.66 39.6 0.8

5 ACO55067.2 IMFNRFHNYV-
VEKLA

0.649 44.78 1

6 ACO55067.2 VFYKLVLRAFP-
NHFR

0.703 24.78 0.15

7 ACO55067.2 FYKLVLRAFPN-
HFRG

0.715 21.86 0.08

8 ACO55067.2 YKLVLRAFPN-
HFRGD

0.697 26.39 0.2

9 ACO55067.2 KLVLRAFPN-
HFRGDS

0.682 31.29 0.4

10 ACO55067.2 ITLKLLHRYSYKLAG 0.651 43.63 1

11 ACO55067.2 TLKLL-
HRYSYKLAGV

0.659 40.07 0.8

12 ACO55067.2 LKLL-
HRYSYKLAGVN

0.649 44.65 1

Table 5  NetMHCIIpan 3.2 scores for HLA-DRB01_1101

S. no. Protein 
GenBank_ID

Epitope DRB1_1101

1-log50k nM Rank

1 ACO55067.2 THVFYKLVL-
RAFPNH

0.667 36.66 1.3

2 ACO55067.2 HVFYKLVLRAFP-
NHF

0.673 34.51 1.2

3 ACO55067.2 VFYKLVLRAFP-
NHFR

0.689 29.05 0.8

4 ACO55067.2 FYKLVLRAFPN-
HFRG

0.69 28.52 0.8

5 ACO55067.2 LLLRYFMEGARIRSS 0.668 36.44 1.3

6 ACO55067.2 LLRYFMEG-
ARIRSSV

0.676 33.27 1.1

7 ACO55067.2 LRYFMEG-
ARIRSSVA

0.671 34.98 1.2

8 ACO55067.2 GARIRSSVAL-
PRVVA

0.663 38.35 1.4

9 ACO55067.2 LTTMLKVI-
GRLDNLR

0.663 38.15 1.4

10 ACO55067.2 TTMLKVIGRLDN-
LRR

0.669 35.96 1.3

11 ACO55067.2 TMLKVIGRLDN-
LRRA​

0.665 37.69 1.4
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Molecular docking
Molecular docking by using latest tools assisted us in 
finding binding scores, binding pocket, and H-bonds 
between epitopes and MHC-II HLA determinants. The 
latest tool PatchDock [16] free server is easily accessible 
and deployed here for docking analysis. For analysing, 
docked complex visualization tools like Chimera tool 
and PyMOL tool were used. Docked complex structural 
validation by using ProSA [17] and MolProbity [18] was 
conducted. These tools assist in determining Z-score and 
Ramachandran plot for protein complexes.

Molecular dynamic and simulation
Docked complexes were used to analyse undersimulation 
by deploying GROMACS tool [19], which assisted us in 

determining stability of complex by notifying RMSD and 
RMSF plots. We employed an OPLS-AA force field for 
MD analysis, which was defined by computing the struc-
tural energy of biological and biochemical systems for 
100 ns.

Results
Protein selection and allergenicity analysis
Core proteins of A. fumigatus were downloaded in fast 
format from GenBank-NCBI database and subjected 
to allergenicity analysis by using AllergenFP tool. This 
server produced TSI (Tanimoto similarity index) for 
defining resemblance of given protein sequence to reveal 
allergen or non-allergen nature of the given proteins 
(Table 2). Non-allergenic proteins were selected and fur-
ther used to identify epitopes from them.

Table 6  Epitope screening based on antigenicity scores (threshold value ≥ 0.4)

HLA determinant Epitope GenBank_ID VaxiJen score Antigenicity

DRB1_0101 VPERKFYLSAAPQCI pdb_2XVN_B 0.461 Antigen

LHRYSYKLAGVNQVD ACO55067.2 0.554 Antigen

HRYSYKLAGVNQVDV ACO55067.2 0.834 Antigen

RYSYKLAGVNQVDVV ACO55067.2 0.559 Antigen

GKSFELNQAARAVTQ ACO55067.2 0.632 Antigen

KSFELNQAARAVTQQ ACO55067.2 0.485 Antigen

DRB1_1501 VFYKLVLRAFPNHFR ACO55067.2 0.482 Antigen

YKLVLRAFPNHFRGD ACO55067.2 0.586 Antigen

KLVLRAFPNHFRGDS ACO55067.2 0.603 Antigen

ITLKLLHRYSYKLAG ACO55067.2 1.034 Antigen

TLKLLHRYSYKLAGV ACO55067.2 0.599 Antigen

LKLLHRYSYKLAGVN ACO55067.2 0.878 Antigen

DRB1_1101 HVFYKLVLRAFPNHF ACO55067.2 0.511 Antigen

VFYKLVLRAFPNHFR ACO55067.2 0.482 Antigen

LLLRYFMEGARIRSS ACO55067.2 0.868 Antigen

GARIRSSVALPRVVA ACO55067.2 0.582 Antigen

Table 7  Epitopes further screening based on physiochemical properties

Epitope Mol. wt. Isoelectric point Half-life Instability index GRAVY score Inference

VPERKFYLSAAPQCI 1722 8.74 100 h 76.5 (unstable) 0.047 Not selected

LHRYSYKLAGVNQVD 1762 8.5 5.5 h −21.43 (stable) −0.54 Selected

RYSYKLAGVNQVDVV 1710 8.5 1 h −21.43 (stable) −0.020 Selected

GKSFELNQAARAVTQ 1619 8.75 30 h −12.04 (stable) −0.54 Selected

VFYKLVLRAFPNHFR 1907 11 100 h 44.17 (partially stable) 0.247 Not selected

KLVLRAFPNHFRGDS 1757 10.84 3 h 29.62 (stable) −0.447 Selected

ITLKLLHRYSYKLAG 1776 10 20 h −12.67(stable) 0.1 Selected

HVFYKLVLRAFPNHF 1888 9.99 3.5 h 44.17 (partially stable) 0.333 Not selected

LLLRYFMEGARIRSS 1812 10.74 5.5 h 53.62 (unstable) 0.14 Not selected

GARIRSSVALPRVVA 1551 12.3 30 h 53.62 (unstable) 0.613 Not selected
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Epitopes screening and antigenicity analysis
NetMHCIIpan 3.2 server was used to find epitopes 
of A. fumigatus core proteins that can bind to MHC-
II HLA-DRB molecules. Considered HLA-DRB pro-
teins were HLA-DRB01_0101, HLA-DRB01_1501, and 
HLA-DRB01_1101 that were used against each FASTA 
sequence provided to this server which is based on 
ANN algorithm. This server generates 1-log50K score, 

binding affinity in nm, and ranks. Threshold of rank 
under 1.5 was considered for selection of epitopes, to 
reveal perfect epitopes that are able to bind MHC-II 
allelic determinants. HLA-DRB01_0101 shows maxi-
mum binding with a total of 27 epitopes (Table  3), 
HLA-DRB01_1501 shows maximum binding with total 
of 12 epitopes (Table 4), and HLA-DRB01_1101 shows 
maximum binding with total of 11 epitopes (Table  5), 
each of 15 amino residues in length.

VaxiJen ver.2.0 tool was used to determine antigenic-
ity of selected epitopes with threshold of 0.4 (Table 6). 
Antigenic epitopes were used for further physiochemi-
cal screening of epitopes.

Physiochemical analysis of epitopes
Screened antigenic proteins were further analysed for 
physiochemical properties to screen epitopes on the 
basis of stability, half-life, isoelectric point, and GRAVY 
score (grand average of hydropathicity) (Table 7). Insta-
bility index defines protein structure to be unstable if 
greater than 50%, and half-life was calculated as per 

Fig. 2  Epitopes 3D structures. A GKSFELNQAARAVTQ. B ITLKLLHRYSYKLAG. C KLVLRAFPNHFRGDS. D LHRYSYKLAGVNQVD. E RYSYKLAGVNQVDVV

Table 8  Molecular docking analysis: receptor and ligand 
docking scores

HLA-allelic 
determinant 
(receptor)

Epitope of interest (Ligand) Atomic contact 
energy (Kcal/
mol)

1XR9 ITLKLLHRYSYKLAG −6.903

1XR9 KLVLRAFPNHFRGDS −6.405

1AQD RYSYKLAGVNQVDVV −5.525

1AQD GKSFELNQAARAVTQ −5.452

1AQD LHRYSYKLAGVNQVD −6.325
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action data against mammalian reticulocytes by deploy-
ing ProtParam server of ExPASy tools. Similar epitopes 
with single or dual amino acid change were also removed 
from screened data, which finalizes 5 epitopes for further 
structural and docking analysis.

Structure prediction for selected epitopes
Structural alphabet approach of de novo prediction was 
deployed to model the finalized epitopes structures. The 
PEP-FOLD ver.3.5 tool uses 5 to 50 amino residues for 
structure modelling and also performs 100 short simula-
tions before conformation finalization for the provided 
sequence data, as this tool uses machine learning algo-
rithms. Structures of epitopes modelled (Fig.  2) were 
used for further molecular docking studies with known 
crystal structures of HLA-allelic determinants that 
were downloaded from RCSB-PDB database; for HLA 
DRB01_0101 retrieval, PDB_ID is 1AQD, and for HLA 
DRB01_1501 retrieval, PDB_ID is 1XR9.

Molecular docking
HLA alleles HLA-DRB01:0101 and HLA-DRB01:15:01 
were docked with epitopes that show interaction as per 

NetMHCIIpan 3.2 scores and previous screening in pre-
sent research context. For molecular docking, PatchDock 
and FireDock tools were used. The atomic contact energy 
(ACE value) for docked complexes was provided in 
Table 8. ACE value for GKSFELNQAARAVTQ, ITLKLL-
HRYSYKLAG, KLVLRAFPNHFRGDS, LHRYSYKLAG-
VNQVD, and RYSYKLAGVNQVDVV epitopes show 
values less than −5 Kcal/mol in docked state with HLA 
allelic determinants. In Fig. 3, all the 5 docked complexes 
were shown that reveals fine interactions between recep-
tor and ligand (epitopes).

Docked complexes structural validation
Z-score indicates stability of structure and overall qual-
ity of the structure modelled with available datasets of 
X-ray and NMR models. The calculated Z-scores for 
complexes are as follows: (1) 1AQD-GKSFELNQAARA-
VTQ: −5.71; (2) 1AQD-LHRYSYKLAGVNQVD: −5.72; 
(3) 1AQD-RYSYKLAGVNQVDVV: −5.71; (4) 1XR9-
ITLKLLHRYSYKLAG: −8.96; and (5) 1XR9-KLVLRAFP-
NHFRGDS: −8.96. Figure 4 indicates Z-plots for all the 
docked complex structures.

Fig. 3  Docked complexes of epitopes with HLA-allelic determinants. A 1AQD-GKSFELNQAARAVTQ. B 1AQD-LHRYSYKLAGVNQVD. C 
1AQD-RYSYKLAGVNQVDVV. D 1XR9-ITLKLLHRYSYKLAG. E 1XR9-KLVLRAFPNHFRGDS
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Ramachandran plot analysis of docked complexes
MolProbity tool was deployed to reveal the validation of 
secondary structures of docked complexes by generat-
ing Ramachandran plots (Fig. 5), and it was noted that all 
the residues (above 90%) were found to be in favourable 
region or allowed region.

MD‑simulation analysis
The experimental characteristics of the dimension of sus-
tainability and thermodynamics stages were reproduced 
using this force field for 100 ns. Moreover, within those 
sorts of simulations, where we examine behaviour at tem-
peratures beyond 300 K, the choice of the water model 
is critical. TIP4P, a four-water system, was identified as 
the fine water model for this research. Here docked com-
plexes were analysed for good interaction studies. An 
RMSD and RMSF plot clearly indicates that all the com-
plexes hold values under 0 to 2.5 nm and 0 to 1.4 nm 
respectively, as provided in Fig.  6. Such scores indicate 
stability of complexes under longer durations.

Discussion
Among the most common causes of invasive aspergillo-
sis and acute bronchopulmonary aspergillosis is Asper-
gillus fumigatus [2]. Transmission with A. fumigatus 
produces aggressive aspergillosis in allogeneic hemat-
opoietic stem cell transplant recipients, HIV patients, 
and cancer patients. Asthmatics and cystic fibrosis 
patients are allergic to A. fumigatus [3, 4]. The major-
ity of T cells might belong to one of two subsets, which 
are attributed to the presence of one of two glycopro-
teins on their surface, labelled as CD8 or CD4. CD4 T 
cells serve as T-helper (Th) cells, recognizing peptides 
on MHC-II determinants [20]. The immune system’s 
hierarchical and combinatorial features contribute to its 
complexity. As a result, a massive quantity of data about 
immune systems is being created. This intricacy must be 
addressed in immunologic research. In current research, 
we found multiple epitopes: ITLKLLHRYSYKLAG, 
KLVLRAFPNHFRGDS, RYSYKLAGVNQVDVV, GKS-
FELNQAARAVTQ, and LHRYSYKLAGVNQVD from 
crucial proteins of A. fumigatus 5,8-linoleate diol syn-
thase (ACO55067.2). ChainB-chitinase A1 (2XVN_B), 

Fig. 4  Z-plots for all the docked complex structures. A 1AQD-GKSFELNQAARAVTQ. B 1AQD-LHRYSYKLAGVNQVD. C 1AQD-RYSYKLAGVNQVDVV. D 
1XR9-ITLKLLHRYSYKLAG. E 1XR9-KLVLRAFPNHFRGDS
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Fig. 5  Ramachandran plots for docked complexes. A 1AQD-GKSFELNQAARAVTQ. B 1AQD-LHRYSYKLAGVNQVD. C 1AQD-RYSYKLAGVNQVDVV. D 
1XR9-ITLKLLHRYSYKLAG. E 1XR9-KLVLRAFPNHFRGDS

Fig. 6  RMSD (A) and RMSF (B) plots for all the five docked complexes
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RYSYKLAGVNQVDVV, GKSFELNQAARAVTQ, 
and LHRYSYKLAGVNQVD epitopes interact with 
HLA-DRB01_0101, while ITLKLLHRYSYKLAG and 
KLVLRAFPNHFRGDS epitopes interact with HLA-
DRB01_1501. Molecular docking analysis reveals atomic 
contact energy (ACE) value for these five epitopes shown 
below −5 Kcal/mol in docked state. Also, docked com-
plex was analysed for simulation analysis, and it was 
found that they show stable interaction pattern as per 
the RMSD and RMSF plots. Many previous studies show 
the importance of immunoinformatic study to support 
our analysis on fungal epitope determination likewise 
for Candida auris, Tropheryma whipplei [21, 22], dengue 
[23], human cytomegalovirus [24], and chikungunya [25]. 
Modern chemi-informatic and immunoinformatics study 
not only supports rapid vaccine prediction but also pro-
vides efficient economic resource management [26–28], 
although immunoinformatic requires wet-lab support as 
future perspectives for epitope synthesis and animal cell 
line-dependent validations.

Conclusions
The invasive aspergillosis and acute bronchopulmonary 
aspergillosis are caused by harmful fungal pathogen 
Aspergillus fumigatus. Our modern immunoinformatic 
research shows ITLKLLHRYSYKLAG, KLVLRAFPN-
HFRGDS, RYSYKLAGVNQVDVV, GKSFELNQAARA-
VTQ, and LHRYSYKLAGVNQVD epitopes could bind 
to MHC-II HLA allelic determinants and can initiate 
immunogenic response in patients affected by Aspergillus 
fumigatus.

Abbreviations
RMSD: Root-mean-square deviation; RMSF: Root-mean-square fluctuation; MD: 
Molecular dynamics; ACE: Atomic contact energy.
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