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Abstract

Background: Soil pollution by heavy metals increases the bioavailability of metals like hexavalent chromium (Cr
(VI), subsequently limiting plant growth and reducing the efficiency of phytoremediation. Plant growth-promoting
rhizobacteria (PGPR) have substantial potential to enhance plant growth as well as plant tolerance to metal stress.
The aim of this research was to investigate Cr (VI) phytoremediation enhancement by PGPR.

Results: The results showed that the 27 rhizobacterial isolates studied were confirmed as Cr (VI)-resistant PGPR, by
using classical biochemical tests (phosphate solubilization, nitrogen fixation, indole acetic acid, exopolysaccharides,
hydrogen cyanide, siderophores, ammonia, cellulase, pectinase, and chitinase production) and showed variable
levels of Cr (V) resistance (300-600 mg/L). The best four selected Cr (Vl)-resistant PGPR (NT15, NT19, NT20, and
NT27) retained most of the PGP traits in the presence of 100-200 mg/L concentrations of Cr (VI). The inoculation of
Medicago sativa with any of these four isolates improved the shoot and root dry weight. The NT27 isolate identified
using 16S rDNA gene sequence analyses as a strain of Pseudomonas sp. was most effective in terms of plant
growth promotion and stress level decrease. It increased shoot and root dry weights of M. sativa by 97.6 and 95.4%,
respectively, in the presence of Cr (VI) when compared to non-inoculated control plants. It also greatly increased
chlorophyll content and decreased the levels of stress markers, malondialdehyde, hydrogen peroxide, and proline.
The results of the effect of Pseudomonas sp. on Cr content and bioaccumulation factor (BAF) of the shoots and
roots of M. sativa plants showed the increase of plant biomass concomitantly with the increase of Cr root
concentration in inoculated plants. This would lead to a higher potential of Cr (VI) phytostabilization.

Conclusions: This study demonstrates that the association M. sativa-Pseudomonas sp. may be an efficient biological
system for the bioremediation of Cr (VI)-contaminated soils.

Keywords: Plant growth-promoting rhizobacteria, Metallic stress, Medicago sativa, Oxidative stress,
Phytoremediation

Background

The intensive urbanization and civilization of society are
responsible for the prominent increase of rapid indus-
trial development and the spread of metals in soils.
Metal soil contamination is recognized as one of the big-
gest environmental concerns worldwide and constitutes
a permanent threat to ecosystems, agricultural
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sustainability, and human health [1]. The agricultural
sector suffers horribly from the increase over time of
metal pollution, such as lead (Pb), cadmium (Cd), chro-
mium (Cr), mercury (Hg), and Arsenic (As) causing a
significant decrease in plant growth and crop vyield [2].
Heavy metals are also used in various terrestrial chem-
ical fungicides and fertilizers, wastewater irrigation, and
sewage sludge causing heavy metal contamination of
water resources and agricultural soils [2, 3].
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Cr is one of the most polluting heavy metals that is
commonly used in the production of electroplating,
stainless steel, textile dyeing, and in the leather industry,
mainly in chrome tanning of skins [4, 5]. Among the dif-
ferent types of Cr forms (Cr*®, Cr*®, Cr*t Cr'3, Crt?,
Cr*l, ¢ Crl, and Cr2), the most stable are Cr (VI)
and Cr (III). The excessive accumulation of Cr (VI) in
the soil causes enormous problems for plant growth and
crop productivity [6]. A higher intake of Cr (VI) slows
down seedling development, germination process, and
root growth [7-9]. The interference of Cr (VI) with nu-
trient uptake, such as phosphorus, within the intracellu-
lar membrane structures and photosynthesis, increases
plant phytotoxicity. This is due to lipid peroxidation
through reactive oxygen species (ROS) and modification
of antioxidant activities [9, 10]. Cr crossing the plasma
membrane oxidizes proteins and nucleic acid through
the production of reactive oxygen species (ROS) due to
its strong oxidizing nature, such as radicals, 0>, OH,
and H,O, [7, 11]. Higher accumulation of Cr (VI) in
plant tissues can affect the chlorophyll content, transpir-
ation process, transport of electrons, CO, fixation, pho-
tophosphorylation, photosynthetic enzyme activity, and
stomatal conductance, which leads to a significant re-
duction of the photosynthetic rate [12-14].

Several efforts have been made to develop technologies
useful for extracting and removing toxic heavy metals
from water and soil, such as chemical oxidation or re-
duction, filtration, chemical precipitation, ion exchange,
and electrochemical treatment [15]. However, these pro-
cesses adversely affect the environment and the health of
soil, plants, and humans. Also, when the concentration
of heavy metals is low, these techniques are mostly inef-
fective and expensive [16]. Therefore, in this context,
using eco-friendly approaches like plant growth-
promoting rhizobacteria (PGPR)-assisted phytoremedia-
tion could be one of the best-suited choices to improve
crop productivity and to alleviate heavy metals problems
[17-21]. Metal hyperaccumulating plants have garnered
considerable attention nowadays. Medicago sativa (al-
falfa) for example is considered as an excellent fodder
legume plant due to its high biomass productivity and
its low susceptibility to environmental stresses like salin-
ity and drought [22, 23]. It is also proposed as a promis-
ing material for metal phytoextraction [24, 25].

Numerous reports have investigated the use of PGPR
to reduce efficiently Cr (VI) bioavailability and lower the
Cr absorption by the plants. The main mechanisms of
Cr (VI) bioremediation are biosorption (sorption of Cr
(VI) by microbes and biological-based materials) and
biotransformation (which convert more mobile and toxic
Cr (VI) to non-toxic form Cr (III)) [26—28]. The inter-
connection between plants and rhizospheric microbes
plays a vital role in the enhancement of
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phytoremediation efficacy via a mechanism called “bio-
assisted phytoremediation” [29]. PGPR resistant to heavy
metals have the potential to relieve heavy metal stress by
improving plant development. The PGPR can similarly
improve the growth and resistance of plants to Cr (VI)
through mechanism of biocontrol and growth promo-
tion. It includes phytohormones stimulation, decreased
stress-induced ethylene production by synthesized en-
zyme ACC (1-aminocyclopropane-1-carboxylate) deami-
nase; production of antioxidant enzymes to scavenge
ROS; production of ammonia, HCN, and siderophores;
phosphate solubilization; nitrogen fixation; and bacterial
secretion of extracellular polymeric substances (EPS)
[28, 30-32]. Such PGPR with multiple properties of Cr
resistance combined with plant growth promotion may
be more essential for phytoextraction and plant growth.
Thus, the present study was aimed at the isolation of
Cr-resistant PGPR and the evaluation of their perform-
ance under Cr stress. Hence, pot experiments were de-
signed to analyze the effect of selected Cr (VI)-resistant
PGPR interaction with M. sativa species to alleviate Cr
stress and to enhance Cr (VI) bioremediation.

Methods

Bacteria isolation

The bacteria were isolated from rhizospheric soil of vari-
ous plants (alfalfa, wheat, barley) from an agricultural
area (33° 56° N, 5° 13" W, 499 m altitude) in the Fez re-
gion, Morocco. The root system was removed along with
the bulk soil from 0 to 20 cm depth, and the rhizosphere
soil was recovered, placed in sterile plastic bags, trans-
ported to the laboratory on an ice pack, and kept at 4 °C
until ready to be processed. The isolation of PGPR was
accomplished on the basis of phosphate solubilization,
which represents a substantial PGP trait. Briefly, 5¢g
rhizosphere soil was mixed into 45 mL distilled water.
Further serial dilutions (1077) were prepared from soil
solution (107") with 0.9 mL distilled water [33]. An ali-
quot (0.1 mL) from each dilution was used to inoculate
National Botanical Research Institute’s phosphate
growth (NBRIP) agar plates (10gL™" p-glucose, 5g L™
Ca;(PO,), 5 MgCl, 6H,0, 0.25gL™" MgSO, H,0, 0.2 ¢
L' KClI, 0.1gL™ (NH,),SO4 15gL™" agar, pH7) that
was incubated at 28°C for 5days [34]. The halo zones
around bacterial colonies and colony morphology were
used to select bacterial isolates.

PGP traits characterization and Cr (VI) tolerance

PGP traits characterization

Twenty-seven bacterial isolates maintained their P-
solubilization ability after three successive subcultures
on the NBRIP agar medium. Their colony diameter and
halo zones were recorded as described by Islam et al.
[35], and their ability to solubilize inorganic phosphate
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was estimated as phosphate solubilization index (PSI):
PSI = the ratio of the total diameter (colony + halo
zone)/the colony diameter.

IAA production by the isolates was quantitatively esti-
mated: 5mL of LB Broth supplemented with L-trypto-
phan (1g/L) and incubated at 28 + 2°C for 120 h with
continuous shaking at 120rpm. After centrifugation
(10,000¢ for 15 min) of bacterial culture, 1 mL of the
supernatant was mixed with 2 mL of Salkowski’s reagent
(1.2 g FeCl3 6H,0 in 100 mL of H,SO4 7.9 M) and incu-
bated at room temperature for 20 min. Optical density
was measured against the standard curve (serial dilutions
of a solution of IAA 50 mg/mL in the LB medium) using
a UV spectrophotometer at 535 nm [36].

A qualitative assay of siderophores secretion by the
isolated bacteria was assessed using blue agar plates con-
taining Chrome azurol S (CAS) (Sigma-Aldrich) with the
methods prescribed by Schwyn and Neilands [37]. The
positive reaction was revealed by the appearance of an
orange zone around the colony, signaling siderophore
production.

HCN production was determined following the Lorck
[38] method. Bacterial isolates were inoculated into
Lauria-Bertani plates supplied with 4.4 g/L of glycine.
Sterilized filter papers (Whatman N°.1) were mounted
on the top of each plate after soaking in picric acid solu-
tion (0.5% of picric acid with 2% of sodium carbonate)
and incubated for 5days at 28 + 2°C. The shift in the
color of the filter paper from yellow to orange-red speci-
fied HCN production by bacteria.

Ammonia production was checked for the isolated
bacteria on peptone water following the Cappuccino and
Sherman [39] method. Bacterial isolates were inoculated
into peptone water (10 mL) and incubated for 48 h at 30
+ 2°C. Then, Nessler’s reagent (500 pL) was transferred
to each tube. The shift in color of the media (develop-
ment of brown to yellow color) indicated ammonia
production.

Nitrogen (N,) fixation experience was executed, in a
malate nitrogen-free mineral medium with modifications
g/L (5g malic acid, 15g Agar, 0.5g K,HPO,, 4g KOH,
0.02g CaCl,, 0.1g NaCl, 02g MgSO, 7H,O, 0.024g
ZnSO, 7H,0, 0.280 g H3BO3, 0.008 g CuSO, 5H,0, 0.01
g FeSO, 7H,0, 0.2g Na,MoO, 2H,0, 0.235g MnSO,
5H,0, and 2 mL of Bromothymol Blue (5%)) [40]. The in-
oculated media were incubated at 28 + 2 °C for 3 days. Ni-
trogen fixation activity was regarded as positive through
shifting in color from pale green to blue.

The production of EPS was tested on the modified
RCV-sucrose medium [41] (yeast extract 0.1 g/L, sucrose
30g/L, agar 15g/L). The plates were inoculated with
fresh bacterial cultures and then incubated for 5 days at
28 °C. The formation of the bacterial gel colonies on the
culture medium indicates the production of EPS.
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Cellulase production was tested according to Gupta
et al’s [42] protocol, using carboxymethylcellulose. Bac-
terial isolates were inoculated into CMC agar medium
(0.05% KH,PO,, 0.025% MgSO, 7H,0, 0.2% CMC (vis-
cosity 10-55 cps, Aldrich Chemical Co.), 1.5% agar) and
incubated for 24 h at 30°C. The CMC plates were then
flooded twice: first, for 15 min, with an aqueous solution
of Congo red (1% w/v), followed by 1 M NaCl for 15
min. A transparent halo was deemed positive for cellu-
lase production.

Pectinase production was assessed using an ammo-
nium mineral agar medium (AMA) [43]. Bacterial iso-
lates were inoculated into AMA medium with some
modifications (apple pectin (Sigma, St. Louis, MO)
(0.5%), Nap,HP0, (0.45%), KH,P0, (0.3%), (NH,)>S04
(0.2%), vyeast extract (0.15%), MgS0, 7H,0 (0.03%),
(FeS04 7H,0 and CaCl, (0.0002%)), (MnS0,, H3B03, and
Na,Mo0, 2H,0 (0.00001%)), ZnS0, 7H,0 (0.000017%),
CuS0, 8H,0 (0.00005%), agar (1.5%)) and incubated for
72h at 28 + 2°C. Pectinase production was shown by
clear halos around the colonies after flooding each plate
with hexadecyltrimethyl ammonium bromide (2%).

The chitinase production was tested following Moon
et al’s [44] protocol, using 0.5% colloidal chitin agar
medium (yeast extract (0.05%), MgSO4,H,O (0.05%),
KoHPO, (0.1%), MnSO4H,0, (0.001%), ZnSO,7H,O
(0.001%), FeSO47H,0 (0.001%), agar (1.5%)). Inoculated
media with bacterial isolates were incubated for 3 days at
28 + 2°C. A transparent halo was deemed positive for
chitinase production. All assays were performed in
triplicate.

Cr (VI) resistance of the bacterial isolates

The resistance of the isolates to Cr (VI) was assessed
using the dilution plate process with a determination of
the minimum inhibitory concentrations (MIC) for each
bacterial isolate. For this purpose, the bacterial isolates
were cultured in Petri dishes containing LB agar
medium supplemented with Cr (VI) (K,Cr,O,) at con-
centrations from 0 to 1000 mg/L. The Cr solution was
filter sterilized before being added to the agar medium.
After 48 h of incubation at 30°C, the minimum inhibi-
tory concentration (MIC) was determined as the lowest
concentration at which no viable colony-forming units
(CFU) were observed [45].

Effects of Cr (VI) on the PGP traits of the selected bacteria

Four bacterial isolates were selected on the basis of PGP
traits and Cr (VI) resistance and tested for their ability
to maintain PGP characteristics under Cr (VI) stress.
The LB medium was supplemented with varying con-
centrations of Cr (VI) (100, 150, and 200 mg/L), and the
PGP proprieties (P solubilization, N, fixation, IAA, NH3,
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HCN, cellulase, pectinase, and chitinase production)
were evaluated as described above.

Plant growth assay of M. sativa and tolerance to Cr (VI)
exposure

Experimental design

Experiments were conducted in plastic pots containing
soil collected from agricultural land in the Fez region.
The soil of the experiments (pH 8.1, organic matter
12.93 g/kg, available phosphate 13.25 mg/kg, and avail-
able N 0.73 g/kg) was artificially contaminated with an
aqueous solution of Cr (VI) (K,Cry,O,), to have a con-
centration of 10 mg of Cr (VI) per kilogram of soil.

Bacterial inoculums of each of the four selected bac-
teria were provided in LB medium and incubated for 24
h at 28 + 2°C. The cells after centrifugation (6000g for
20 min) were washed twice with sterile saline solution
and resuspended in sterile saline solution and then di-
luted with sterilized water to achieve an optical density
of 0.6 corresponding to 10° CFU/mL.

Alfalfa seeds were surface-sterilized and germinated in
soft agar plates 0.7% (w/v) water-agar. Plantlets were
transplanted in the culture devices (500 g of soil into a
plastic cup (10 x 9 x 20 cm)), with 3 plants per pot (3
pots for each treatment). Then, 3 mL of PGPR inoculum
(DO 10® CFU/mL) were added to each pot (1 mL per
plant). The pot culture experiment was arranged in ran-
domized design containing four treatments: (i) absence
of bacteria and Cr (VI) (negative control), (ii) absence of
bacteria and presence of Cr (VI) (positive control), (iii)
presence of bacteria and absence of Cr (VI), and (iv)
presence of bacteria and Cr (VI). Two days later, the
pots were inoculated with 2 mL of a suspension of each
bacterial culture (108 CFU/mL). Two milliliters of saline
solution was added to the uninoculated plants. Pots were
positioned in a greenhouse (approximately 16 h photo-
period, 26-30°C day and 18-22°C night) and watered
regularly. Five weeks later in the budding stage (from
this stage through early flower is usually ideal to harvest
high-quality alfalfa), plants were harvested and washed
with deionized water, then divided into roots and shoots.
The biomass yield was estimated after oven drying at
65 °C until constant weight.

Plant analyses

Chlorophyll content

For the assessment of leaf chlorophyll content, Moran
and Porath’s [46] methodology was followed. The M.
sativa leaves (50 mg) were homogenized with acetone
(80%), and the extract was centrifuged for 5 min (9000g
at 4°C). Then, the optical density was measured at
646.8 nm and 663.2 nm. The total chlorophyll was deter-
mined using the following equation: [(7.15 x Agesz2) +
(18.71 x Agacg)] VIM, where V is the final volume of the

(2021) 19:149

Page 4 of 14

filtrate and M is the fresh weight of the leaf. It was
expressed as mg/g fresh weight of leaf tissue. The
chlorophyll a/b ratios were also calculated.

Proline content

For the assessment of proline content of the leaves,
Bates et al’s [47] methodology was followed. Plant ma-
terial (0.5g) was mashed in 10 mL of aqueous sulfosa-
licylic acid 3%. Then, 2 mL of filtrate was mixed with 2
mL of ninhydrine and 2 mL of glacial acetic acid. After
incubation for 1 h at 100 °C, the reaction was stopped in
an ice bath and 4 mL of toluene was added to each tube.
Then, the optical density was measured at 525 nm. Free
proline per gram of fresh weight was calculated as fol-
lows: [(ug proline/mL x mL toluene)/115.5 pug/pumole]/
[(g sample)/5] = pmoles proline/g.

Hydrogen peroxide content

For the assessment of hydrogen peroxide (H,O,) content
of the leaves, Jana and Choudhuri’s [48] methodology
was followed with some modifications. One gram of
leaves was homogenized with 0.1% trichloroacetic acid
(TCA) (15 mL) and centrifuged for 20 min at 6000g. The
supernatant (0.5mL) was added to 10 mM phosphate
buffer pH = 7 (0.5 mL) and 1 mM KI (1 mL). Then, the
optical density was measured at 390 nm. From a stand-
ard curve prepared using known H,O, concentrations,
the sum of H,O, was determined and expressed as mM/
g fresh weight of leaf tissue.

Malondialdehyde content

To determine the malondialdehyde (MDA) content in
plant leaves, Heath and Packer’s [49] methodology was
adopted. Briefly, 0.2 g of leaves was homogenized with 5
mL of (0.5% 2-thiobarbituric acid (TBA) and 20% TCA)
solution, and 1 miL of alcoholic extract was added to 1
mL of 20% TCA to prepare the control. The mixture
was heated for 30min at 95°C, cooled at room
temperature, and centrifuged (5000g for 10 min at
25 °C). Optical density was measured at 532 nm and 600
nm.

Effect of bacterial inoculation on plant phytoremediation
potential
This study was focused on plants inoculated by the bac-
terial isolate NT27 that showed interesting performance
in terms of PGP traits under Cr (VI) stress, plant
growth, and tolerance to Cr (VI). The plant’s phytoreme-
diation potential was assessed by analyzing Cruptake by
root and shoot tissues of plants grown as described
above.

Approximately 200 mg of powdered plant tissue was
digested after 24 h of drying at 70°C [50]. Then, using
the inductively coupled plasma atomic emission
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spectrometer (ICP-AES) (Jobin Yvon), total Cr content
was determined in root and shoot tissues.

To estimate the metal uptake in plant sections, the
bioaccumulation factor (BAF) was determined. It pro-
vides an index of a plant’s ability to absorb a specific
metal relative to its medium concentration [51].

BAF root = Metal concentration in the roots /Metal concentration in the soil

BAF shoot = Metal concentration in the shoots/Metal concentration in the soil

Molecular identification

The selected isolate NT27 was characterized by a mo-
lecular identification approach using the universal
primers fD1 (50 AGA GTT TGA TCC TGG CTC AG
30) and rD2 (50 ACG GCT ACC TTG TTA CGA CTT
30) [52]. Bacterial DNA extraction and fragment of
rDNA amplification were realized as described by Tirry
et al. [53]. The sequences obtained were checked and ex-
tracted by Mega X (version 10.0.5). Related sequences
were obtained from the GenBank database, National
Center for Biotechnology Information (NCBI), using the
BLAST analysis, and then accession number was ob-
tained after submission to the NCBI GenBank database.
Sequences were aligned to their nearest neighbors using
the MUSCLE program [54], and then a phylogenetic tree
was constructed using the MEGA-X program [55].

Statistical analysis

In order to determine the significant differences among
treatments, the data collected were submitted to
ANOVA analysis by using the Minitab 18 software. All
the values were compared using Tukey’s method at p <
0.05.

Results

PGP traits and Cr (V1) resistance of the bacterial isolates
In the present work, 27 bacterial isolates were isolated
from the plant rhizosphere based on the solubilization of
inorganic phosphate. These isolates showed different
PGP traits (phosphate solubilization, nitrogen fixation,
IAA, HCN, siderophores, ammonia, EPS, and hydrolytic
enzyme production), with different degrees of tolerance
to Cr (VI) (Table 1). Four isolates NT15, NT19, NT20,
and NT27 were selected on the basis of their Cr (VI) tol-
erance and their PGP characteristics. They showed high
resistance to Cr (VI) concentrations up to 600 mg/L.
They also showed interesting (PGP) traits, for example,
higher values of PSI (3.6) and IAA (572.27 ug/mL) were
recorded by NT15 and NT20 isolates, respectively. Fur-
thermore, the selected isolates showed other PGP traits
like N, fixation, EPS, NH3, HCN, siderophores, cellulase,
pectinase, and chitinase production (Table 1).
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PGP traits of the selected bacteria under Cr (V1) stress
The ability of the selected isolates to maintain different
PGP traits in the presence of Cr (VI) at concentrations
ranging from 100 to 200 mg/L is presented in Table 2.

The results show that for the strain NT15, the IAA
production decreased by 16.64%, 27.8%, and 76.2%, com-
pared to the control at 100, 150, and 200 mg/L of Cr
(VI), respectively. Decreases of 14.4% and 18.3% for the
phosphate solubilization index compared to the control
were observed at 100 and 150 mg of Cr (VI), respect-
ively, followed by total inhibition at 200 mg/L. The nitro-
gen fixation was maintained until 150 mg whereas
ammonia production was maintained at all concentra-
tions of Cr (VI). HCN and chitinase production was
inhibited at all concentrations of Cr (VI).

For the isolate NT19, decreases of 19.76%, 29%, and
64.45% of the IAA production, compared to the control,
were obtained at 100, 150, and 200 mg/L of Cr (VI), re-
spectively. Decreases of 20% and 28.8% in the P
solubilization index, compared to the control, were ob-
served at 100 and 150 mg/L of Cr (VI), respectively,
followed by total inhibition at 200 mg/L of Cr (VI). At all
concentrations studied of Cr (VI), the isolate was able to
maintain NH; and cellulase production but was unable to
fix nitrogen and to produce pectinase and chitinase.

For the isolate NT20, decreases of 36.87%, 55.8%, and
79.4% in TIAA production, compared to the control, were
observed at 100, 150, and 200 mg/L of Cr (VI), respectively.
Decreases of 23% and 65.4% in phosphate solubilization
index, relative to the control, were observed at 100 and 150
mg/L, respectively, and a total inhibition was obtained at
200 mg/L of Cr (VI). At all concentrations of Cr (VI), the
isolate retained its ability to fix nitrogen, ammonia, and cel-
lulase production whereas HCN and chitinase productions
were inhibited. Pectinase production was inhibited at the
concentration of 200 mg/L of Cr (VI).

For the isolate NT27, decreases of 25.75%, 46.69%, and
70.67% in IAA production, compared to the control,
were observed at 100, 150, and 200 mg/L of Cr (VI), re-
spectively. Decreases of 43.53%, 56.1%, and 62.74% in
the phosphate solubilization index, compared to the
control, were observed at 100, 150, and 200 mg/L of Cr
(VI), respectively. Ammonia production and nitrogen
fixation were maintained at all concentrations of Cr (VI).
The strain was able to produce HCN and pectinase till
the concentrations of 100 and 150 mg/L, respectively,
whereas its ability to produce chitinase was lost at all
concentrations of Cr (VI).

Effect of bacterial inoculation on the tolerance of M.
sativa to Cr (VI) stress

Plant growth

The effect of the four selected isolates (NT15, NT19,
NT20, and NT27) on alfalfa plant growth was studied in
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Table 1 Minimum inhibitory concentrations (MIC) of Cr (VI) and plant growth-promoting (PGP) traits of the bacterial isolates. Data
are the mean of replicates with SE+. Values with different letters are significantly different (p < 0.05)

Isolat MIC (mg/L) Cr (VI) PSI IAA (ng/mL) Sid N, EPS NH;3 HCN Case Pase Chase
NT1 600 24 + 0259 167 + 1.42° + - - + - + + +
NT2 400 133 £ 010" 1875 + 1.59 + + - + - + + +
NT3 600 1.8 + 0,1°d€fah 125.75 + 145" - - - + + + - +
NT4 600 28 + 02 10 + 042° + - - + + + + +
NT5 600 233 + 0.3°%f 715+ 1.1% - - + - + +
NT6 600 114 +02" 14475 + 1379 - + - + - + - -
NT7 400 1.83 + 0.3¢4¢fan 16175 + 147° + + - + + + - +
NT8 400 2 + 0,1¢°defah 6325 + 1.18™ - - - + + - +
NT9 600 125+ 0.19" 615+ 1.15™ + + + + + - + +
NT10 300 2 + 0.2°defah 9225 + 1217 + - - + + + + +
NT11 600 144 + 035" 144 + 1.199 + + - + + - - +
NT12 400 2 + 02defah 14375 + 1.229 + + + + + + - -
NT13 300 1.92 + 04°defan 1895 + 243° + + - + + - +
NT14 300 2 + 0.1°defah 455 + 1.16° + + - + + + +
NT15 600 36+ 05%° 192,95 + 2.5¢ + + - + + - - +
NT16 400 1.71 + 0.24¢foh 73 + 1.25 + + + + + - + +
NT17 600 168 + 0.34¢fn 1245 + 168" + - - + - - + +
NT18 400 2.06 + 0.4°dfah 9675 + 1.23' + - - + - - + +
NT19 600 255+ 0.1< 8863 + 1.25 + + + + - + +
NT20 600 2.1 + 0.1¢defoh 57227 + 4252 + + + + + + +
NT21 400 2,07 + 04°defah 1815 + 1.31¢ + - - + + + - +
NT22 600 254 + 02 49 + 1.14™ + + - + + - - -
NT23 300 257 + 03 152 + 2241 + - - + + + - +
NT24 400 221 +0.1°%f0 213.25 + 344° + - - + + - + +
NT25 300 391 + 06° 56.25 + 1.16™" + - - - + + - -
NT26 600 2.09 + 02°defoh 4675 + 1.17° + + - + - + - +
NT27 600 262 + 03 64.11 £ 1134 + + + + + + + +

+ positive test, — negative test, Sid siderophores, Chase chitinase, Case cellulase, Pecase pectinase, PSI phosphate solubilization index

the presence of 10 mg/L of Cr (VI) (Fig. 1a, b). In unin-
oculated plants (control), the results showed a reduction
of 38.87% and 42.13% in the dry weight of shoots and
roots, respectively, in plants subjected to Cr (VI) stress.
Inoculation with bacterial cells resulted in increased
plant growth both in untreated and Cr (VI)-treated
plants. In the absence of Cr (VI) stress, inoculation with
NT15 and NT27 significantly (p < 0.05) increased the
dry weight of plant shoot by 64.7% and 70.9%, respect-
ively, compared to the control. An increase in the dry
weight of the roots was observed after inoculation with
the bacteria, with a maximum value of 62%, observed in
plants inoculated with NT27, followed by 42.7% in
plants inoculated with NT19, in comparison with the
uninoculated plants. In the presence of Cr (VI), inocula-
tion with bacteria reduced the negative effect of Cr (VI)
on plant growth. A maximum increase in the shoot dry

weight of 97.6% and 90.36% was observed in the plants
inoculated by NT27 and NT20, respectively. An increase
in the dry weight of the roots was observed after inocu-
lation with the isolates, with a maximum value of
95.38% in plants inoculated by NT27, followed by
86.84% in the plants inoculated by NT20.

Chlorophyll content and antioxidant system

Our results showed that the treatment of the plants
with Cr (VI) caused a reduction in the total chloro-
phyll content and chlorophyll a/b ratio by 34% and
62.75%, respectively, in comparison with unstressed
plants (Fig. 2a). In the absence of Cr (VI), all isolates
increased the total chlorophyll content and chloro-
phyll a/b ratio of M. sativa leaves, with a maximum
increase of total chlorophyll of 12.6%, observed in the
plants  inoculated with NT15 compared to
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Table 2 Growth-promoting traits of the selected bacterial isolates (NT15, NT19, NT20, and NT 27) in the presence of Cr (VI) at 100,
150, and 200 mg/L. Data are the mean of replicates with SE+. Values with different letters are significantly different (p < 0.05)

Isolate [Cr PGP traits
mg " PsI N, [IAA] (mg/L) NH, HCN Case Chase Pecase
NT15 Control 355+ 05° 19763 + 2437 + + - + -
100 304 +03° 164.74 + 1.44° + - - - -
150 290 + 0.3° 14263 + 1.42° + - - - -
200 - - 4711 + 0174 + - - - -
NT19 Control 250 + 0.2° + 8921 + 1.16° + - + + +
100 200+ 0.1° - 7158 +1.17° + - + - -
150 178 + 007 - 63.29 + 041° + - + - -
200 - - 3171 £0.11¢ + - + - -
NT20 Control 205 + 04° + 560 + 5.65° + + + + +
100 158 +0.2° + 353.50 + 4.55° + - + - +
150 071 +0.1° + 24736 + 251° + - + - +
200 - + 11544 + 1.22¢ + - + - -
NT27 Control 255+ 037 + 66.14 +1.17° + + + + +
100 144 +03% + 4911 £ 1.12° + + + - +
150 112 +02° + 35.26 + 043¢ + - + - +
200 095 + 0.1° + 1940 + 0.03¢ + - + - -

+ positive test, — negative test, Chase chitinase, Case: cellulase, Pecase pectinase, PSI phosphate solubilization index

uninoculated plants. In the presence of Cr (VI), the
bacterial inoculation resulted in an increase of total
chlorophyll levels and chlorophyll a/b ratio compared
to non-inoculated stressed plants. Increases of 25%
and 21.8% of total chlorophyll were observed in the
plants inoculated with NT27 and NT15, respectively.
The results showed that Cr (VI) stress amplifies the
accumulation of proline by 266%, MDA by 39.5%, and
H,O, by 55.86% in M. sativa plants (Fig.2). In the

presence of Cr (VI), all the isolates significantly (p <
0.05) lowered the proline content in the shoots of alfalfa
plants, with a maximum reduction of 63% recorded in
the plants inoculated with the isolate NT27 compared to
the uninoculated plants. In control plants, the decrease
in the level of proline in the plants inoculated by the
four isolates was not significant (Fig. 2b). Inoculation
with the isolates decreased MDA values with a max-
imum of 42.4% observed in the plants inoculated with
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60 | be be be
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60 -
a
_ 50 - ab
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E ef ef
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Fig. 1 Effect of inoculation with NT19, NT15, NT20, and NT27 on the dry weight of the shoot (A) and root (B) of M. sativa in the absence (—Cr
(V1)) and the presence of Cr (VI)(+ Cr(Vl)). Values are means + SF; values with different letters are significantly different (p < 0.05)
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Fig. 2 Effect of bacterial inoculation on chlorophyll (A), proline (B), MDA (C), and H,O, (D) content of M. sativa leaves, in the absence (—Cr (V1))
and in the presence of (+Cr (VI)). Values are means + SD; values with different letters are significantly different (p < 0.05)
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NT27, compared to the uninoculated plants. No signifi-
cant effect of bacterial inoculation was observed in the
case of non-stressed plants (Fig. 2c).

With respect to H,O, content, a significant increase
(55.86%) was observed in uninoculated plants in re-
sponse to Cr (VI) stress. However, bacterial inoculation
significantly reduced the accumulation of H,O, by
51.73%, 49.1%, 42.2%, and 59.35% in plants inoculated
by NT15, NT19, NT20, and NT27, respectively. In the
absence of Cr (VI) stress, inoculation of plants also re-
duced significantly the accumulation of H,O, in plant
tissues, with a maximum decrease of 54.5% observed in
plants inoculated with NT27, compared to the control
(Fig. 2d).

Effect of bacterial inoculation on metal uptake by plants
The total Cr uptake in the shoots and roots of M. sativa
after 45 days is shown in Table 3. Data showed that the

roots accumulated more Cr than shoots in both inocu-
lated and uninoculated M. sativa plants. Bioaugmenta-
tion with the NT27 isolate significantly (p < 0.05)
enhanced the root uptake of Cr and increased the bio-
accumulation factor (BAF) by 49.03% as compared to
uninoculated and uncontaminated control, while no sig-
nificant difference was noticed in shoot Cr contents.

Identification of the bacterial isolate

The 16S rRNA sequencing results identified the selected
bacterial isolate NT27 as Pseudomonas sp. (GenBank:
MT337487.1) which showed similarities of 99.38% with
Pseudomonas sp. FL40 (DQ091247.1). Representative
species of closely related taxa, analyzed using the
neighbor-joining (NJ) algorithm, formed a Pseudomonas
cluster consisted of the isolate NT27, Pseudomonas sp.
strain NTE1l, Pseudomonas sp. PCWCW2, P.

Table 3 Effect of Pseudomonas sp. (NT27) on Cr content (ug/g) and bicaccumulation factor (BAF) of the shoots and roots of alfalfa
grown on contaminated soils with Cr (VI). Values with different letters are significantly different (p < 0.05)

Treatment Chromium uptake (ug/g of dry weight) BAF

Roots Shoots Roots Shoots
Control ND ND - -
Cr (VI) 312+03° 149 +0.2° 031 +0.1° 0.15+0.11°
Cr (VI) + NT27 465 + 033" 158 +0.1° 046 + 0.1° 0.16 + 0.02°




Tirry et al. Journal of Genetic Engineering and Biotechnology

plecoglossicida RTE-E1, Pseudomonas sp. FL40, Pseudo-
monas sp. SHC, and Pseudomonas sp. A13 (Fig. 3).

Discussion
Cr is considered among the most toxic heavy metals be-
cause of its higher electronegativity [56, 57]. The wide-
spread of Cr participates in the deterioration of
agricultural soils on a regular basis [58, 59]. The present
study was performed to isolate, screen, and characterize
Cr (VI)-resistant PGPR and to determine their effects on
growth and Cr (VI) toxicity tolerance of M. sativa
plants. Our results showed that the 27 bacterial isolates
studied showed various PGP properties (P solubilization,
N, fixation, IAA, EPS, HCN, siderophores, NHj3, cellu-
lase, pectinase, and chitinase production) and variable
levels of Cr (VI) resistance (300—600 mg/L). Four bacter-
ial isolates (NT15, NT19, NT20, and NT27) were se-
lected for showing an ability to resist up to 600 mg/L of
Cr (VI) concentration along with maintenance of high
production of IAA, HCN, cellulase, pectinase, chitinase,
and NHj; P solubilization; and nitrogen fixation in the
presence of Cr (VI) concentrations ranging between 100
and 200 mg/L. The production of several metabolites
showed a gradual decline when the concentration of Cr
(VI) increases, indicating that, under stressful conditions,
bacterial cells were actively involved in stress manage-
ment than in other metabolic processes [60].

The detrimental effects of Cr (VI) on plant growth
obtained in this study were also reported in previous
works [18, 20, 61-63]. Chen et al. [64] reported that
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20mg of Cr (VI) per kilogram in soil can signifi-
cantly reduce plant dry weight and root length of
wheat. Also, Barcelo and Poschenrieder [65] sug-
gested that a high accumulation of Cr (VI) in the
roots and shoots restricts cell division, which limits
their elongation.

After inoculation with the PGPR isolates, plant growth
improved in Cr (VI)-treated M. sativa plants (showing
similar values to uncontaminated plants both in roots
and shoots) (Fig. 1). The effects of microorganism inocu-
lation on host plant responses to Cr (VI) are poorly
studied, particularly in the case of leguminous plants (M.
sativa). Other combinations of host plant-microbes have
been shown to improve plant resistance to Cr (VI). For
example, Karthik et al. [66] demonstrated the positive ef-
fects of C. funkei on Phaseolus vulgaris under Cr (VI)
stress. Recently, Danish et al. [67] and Gupta et al. [63]
demonstrated that Cr (VI)-tolerant PGPR strains “Agro-
bacterium fabrum and Leclercia adecarboxylata” and
“Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49” re-
spectively enhanced the growth of maize (Zea mays) and
Helianthus annuus (L.) cultivated under Cr (VI) stress.
Other studies have shown a positive effect of PGPR on
plant growth in the presence of other heavy metals such
as Cd [68], Cu and Cd [69], and Pb [70]. Rhizobacteria
that promote plant growth can increase plant develop-
ment and performance indirectly by reducing the toxic
effects of metals or directly by producing phytohor-
mones and growth factors [71, 72]. Indeed, PGP traits
are successfully involved in promoting plant growth and

45

30

[

0.0020

substitutions per nucleotide position

(MT337492.1) Pseudomonas sp. strain NTE1
(GQ284471.1) Pseudomonas sp. PCWCW?2
(LC572260.1) Pseudomonas plecoglossicida RTE-E1
(DQ091247.1) Pseudomonas sp. FL40
(LN889754.1) Pseudomonas sp. SHC
(MK680524.1) Pseudomonas sp. strain A13
(MT337487.1) NT27

Fig. 3 Phylogenetic analysis of the isolate NT27 based on the sequencing of the 16S ribosomal RNA gene. The scale bar indicates 0.0020
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attenuating the degree of toxicity in plants exposed to
metal stress [72].

The high concentration of heavy metals in the soil af-
fects plant growth because it interferes with the uptake
of nutrients such as phosphorus as suggested by Hal-
stead et al. [73]. However, this deficiency can be com-
pensated by the ability of PGPR to solubilize phosphates
which plays an important role in improving the uptake
of minerals such as P by plants in metal-contaminated
soils [74]. Also, the production of phytohormones by
PGPR has been shown to play a key role in plant-
bacteria interactions and plant growth in heavy metal-
contaminated soils [75]. For instance, the stimulation of
plant growth observed under Pb stress after inoculation
with P. fluorescens has been attributed to the production
of IAA [76].

Furthermore, microbial communities in the rhizo-
spheric zone could play an important role in metal stress
avoidance through secreting extracellular polymeric sub-
stances (EPS) such as polysaccharides, lipopolysaccha-
rides, and proteins, possessing an anionic functional
group that helps remove metals from the rhizosphere
through the process of biosorption [28, 77]. The EPS
produced by some microorganisms induce the formation
of biofilms in response to the exposure to toxic heavy
metals. Biofilm formation helps detoxify heavy metals by
enhancing the tolerance capacity of microbial cells or by
converting toxic metal ions into non-toxic forms [78].
PGPR are also characterized by the production of sidero-
phores, which can stimulate plant growth directly under
iron limitation, for example [79], or indirectly by form-
ing stable complexes with heavy metals such as Zn, Al,
Cu, and Pb and helping plants to alleviate metal stresses
[80]. Indeed, siderophores have a variety of chemical
structures; they have atoms rich in electrons such as
electron donor atoms of oxygen or nitrogen that can
bind to metal cations [81, 82]. Hannauer et al. [83] and
Hernlem et al. [84] conducted a study with 16 different
metals and concluded that the siderophores pyoverdin
and pyochelin produced by P. aeruginosa are able to
chelate all of these metals. In addition, siderophores se-
creted by PGPR can decrease free radical formation,
which helps protect microbial auxins from degradation
to promote plant growth [85]. Thus, in the present
study, it is likely that the observed positive effect of the
PGPR on plants grown under Cr (VI) might be primarily
attributed to their PGP characteristics.

On the other hand, our results showed that the treat-
ment of the plants with Cr (VI) caused a reduction in
the total chlorophyll content in comparison with un-
stressed plants (Fig. 2a). These results are in agreement
with other research reporting that the chlorophyll con-
tent decreased consistently with increasing Cr (VI) con-
centration [67, 86]. The alteration of chlorophyll content
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due to the Cr (VI) effect may be due to the inhibition of
enzymes responsible for chlorophyll biosynthesis as sug-
gested by Karthik et al. [66]. Cr (VI) toxicity inhibits
photosynthesis by increasing H,O, accumulation, super-
oxide production, and lipid peroxidation [87]. A higher
Cr (VI) input disrupts the ultrastructure of the chloro-
plast and restricts the electron transport chain. Restric-
tion of the electron transport chain diverts electrons
from the PSI (electron donor side) to Cr (VI), which
considerably decreases the photosynthesis rate [88, 89].

Upon inoculation by PGPR, the total chlorophyll levels
increased under Cr stress. This could be due to the im-
provement of its synthesis or to the slowing down of the
process of its degradation [66]. The improvement in
chlorophyll content following inoculation could also be
due to the reduction of Cr (VI) to non-toxic Cr (III)
and/or to different PGP traits of these bacteria. Sidero-
phores through the chelation reaction are known to re-
duce iron deficiency induced by heavy metals and thus
help plants to synthesize photosynthetic compounds
such as heme and chlorophyll [90, 91]. Furthermore, the
enzymatic activities, phytohormones, siderophores, and
organic acids of PGPR are all responsible for the reduc-
tion of toxic Cr (VI) to non-toxic Cr (III) [92-94].

Our results showed also that Cr (VI) stress amplifies
the accumulation of proline in M. sativa plants. The in-
creased proline content in plants has previously been
identified as an adaptive response to environmental
stresses [95, 96]. Proline helps plants deal with stress-
related toxicity by controlling osmotic balance, detoxify-
ing reactive oxygen species (ROS), stabilizing antioxidant
enzymes, modulating gene expression, and activating
multiple detoxification pathways [97, 98]. The inocula-
tion with PGPR resulted in a substantial decrease of pro-
line content in M. sativa plants, indicating that
inoculated plants were less affected by Cr (VI) stress
than uninoculated plants. Similar findings were found by
Islam et al. [99] who reported that the level of proline in
the corn plant exposed to Cr (VI) stress was significantly
higher (1.08 times) than the uncontaminated plants and
that inoculation with a PGPR strain reduced the proline
concentration by 30%. A similar result was obtained by
Karthik et al. [66], with a decrease of proline accumula-
tion by 84.56% and 44% in the case of the association of
P. vulgaris with two Cellulosimicrobium strains AR6 and
ARS, respectively, under Cr (VI) toxicity.

Cr stress increased MDA content in M. sativa plants.
MDA is a product of lipid peroxidation of the cell mem-
brane system. MDA reacts with free amino acid groups,
causing cell damage due to inter- and intramolecular re-
ticulation of proteins [99]. The elevated MDA indicates
an oxidative stress, and this may be one of the mecha-
nisms by which Cr (VI) toxicity manifests in plant tis-
sues. The accumulation of MDA is reported also in the
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case of other metallic stresses (lead, arsenic, cadmium)
[100]. Plants with a low MDA content have less lipid
peroxidation and, as a consequence, less oxidative dam-
age. Upon inoculation of M. sativa plants by PGPR, the
level of MDA decreased significantly. In accordance with
our results, several works have shown the positive effect
of PGPR inoculations of heavy metal-stressed plants on
the attenuation of MDA levels. For example, Din et al.
[32] reported that inoculation with B. xiamenensis PM14
significantly reduced the MDA content of S. sesban
plant. Bruno et al. [101] also showed that inoculation of
S. bicolor with Bacillus cereus TCR17, Providencia
rettgeri TCR21, and Myroides odoratimimus TCR22 de-
creased the levels of proline and MDA in plants under
Cr (VI) stress. In fact, it was already suggested that in-
oculation activates the protective mechanisms for ROS
detoxification in plants under stress conditions, resulting
in a decline in lipid peroxidation [102].

The four isolates studied in the present work (NT15,
NT19, NT20, and NT27) showed a high tolerance to Cr
(VI) and a high production of substances that promote
plant growth in the presence of Cr (VI), demonstrating
their potential to contribute to beneficial plant-microbe
interactions in soils contaminated by heavy metals. More
specifically, the NT27 isolate showed significant resist-
ance to Cr (VI), characteristics of promoting plant
growth and a capacity to enhance the tolerance of M.
sativa to Cr (VI). This isolate was identified as a strain
of Pseudomonas sp. by 16S rDNA sequence analysis. Its
effect on Cr (VI) content and bioaccumulation factor
(BAF) of the shoots and roots of M. sativa plants was
significantly (p < 0.05) higher in comparison with unin-
oculated and uncontaminated control. Several works re-
ported the increased metal concentrations in tissues of
inoculated plants by the Pseudomonas genus. For in-
stance, Kamran et al. [103] and Ma et al. [104] observed
that P. putida and Pseudomonas sp. A3R3 increased the
Cr (VI) and Ni uptake in Eruca sativa and Alyssum ser-
pyllifolium plants, respectively. For other bacterial ge-
niuses, Din et al. [32] and Tirry et al. [105] noticed an
increased Cr (VI) accumulation in Sesbania sesban and
M. sativa by the addition of B. xiamenensis PM14 and
Cellulosimicrobium sp., respectively.

Nevertheless, for certain cases, it has been documented
that inoculating plants with metal-resistant bacteria re-
duced metal uptake and increased plant biomass [106],
which can be explained by the metal immobilization in
the rhizosphere. In fact, several authors recorded lower
Cr (VI) accumulation in bacterial inoculated plants due
to the bacterial immobilization of Cr (VI) through sev-
eral mechanisms, including reduction, adsorption, accu-
mulation, and production of cell surface-related
polysaccharides and proteins [107, 108]. In the present
study, it is outstanding that Cr accumulation by roots
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was more significant than by shoots following NT27 in-
oculation of M. sativa. This is probably due to Cr (VI)
reduction to Cr (III), which would have favored the
immobilization of Cr (VI) in the rhizosphere and its phy-
tostabilization in the plant roots. The phytoremediation
ability of M. sativa plants seems to be largely favored by
the strain of PGPR involved.

Conclusions

We can conclude from our results that the inoculation
of M. sativa species by PGPR overcoming the negative
effects of Cr (VI) stress and increased the plant growth
rate and the content of chlorophyll. It also greatly de-
creased the levels of stress markers, malondialdehyde,
hydrogen peroxide, and proline.

The bacterial strains NT15, NT19, NT20, and NT27
exhibited high tolerance to Cr (VI) and produced sub-
stances favoring the growth of plants, both in normal
and under Cr (VI) stress conditions, demonstrating their
potential to contribute to beneficial plant-micro-
organism interactions in soils contaminated by metals.
This study provides clear evidence of the response of
bacterial strains in the rhizosphere to Cr (VI) and the
enhancement of M. sativa growth and antioxidant sys-
tem under stress by Cr (VI). The results showed also
that an enhanced Cr (VI) phytoremediation of M. sativa
can be achieved by Pseudomonas sp. inoculation. There-
fore, inoculation of these bacterial strains from the
rhizosphere might be a good choice for application in
microorganism-assisted phytoremediation approaches
for the remediation of heavy metal-contaminated soils.
These strains can also act as a lasting factor in the phy-
tostabilization of Cr (VI) and a control of its entry into
the food chain.
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