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Abstract

Background: The number of cancer-related deaths is on the increase, combating this deadly disease has proved
difficult owing to resistance and some serious side effects associated with drugs used to combat it. Therefore,
scientists continue to probe into the mechanism of action of cancer cells and designing novel drugs that could
combat this disease more safely and effectively. Here, we developed a genetic function approximation model to
predict the bioactivity of some 2-alkoxyecarbonyl esters and probed into the mode of interaction of these
molecules with an epidermal growth factor receptor (3POZ) using the three-dimensional quantitative structure
activity relationship (QSAR), extreme learning machine (ELM), and molecular docking techniques.

Results: The developed QSAR model with predicted (R2pred) of 0.756 showed that the model was fit to be validated
parameter for a built model and also proved that the developed model could be used in practical situation, R2 for
training set (0.9929) and test set (0.8397) confirmed that the model could successfully predict the activity of new
compounds due to its correlation with the experimental activity, the models generated with ELM models showed
improved prediction of the activity of the molecules. The lead compounds (22 and 23) had binding energies of
−6.327 and −7.232 kcalmol−1 for 22 and 23 respectively and displayed better inhibition at the binding sites of 3POZ
when compared with that of the standard drug, chlorambucil (−6.0 kcalmol−1). This could be attributed to the
presence of double bonds and the α-ester groups.
Conclusion: The QSAR and ELM models had good prognostic ability and could be used to predict the bioactivity
of novel anti-proliferative drugs.

Keywords: 2-alkoxycarbonyl esters, Computer-aided drug design, Genetic function approximation, Extreme learning
machine, Epidermal growth factor receptor, Molecular docking
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Background
In the world, pancreatic cancer (PC) is ranked the fourth
highest cause of cancer-related deaths and the four-
teenth most common cancer [1]. By the year 2030, it is
predicted that it would become the second-most com-
mon cause of cancer-related deaths [2]. Pancreatic can-
cer is mainly divided into two types: (i) pancreatic
adenocarcinoma (PA), the most common (85% of cases),
arises in exocrine glands of the pancreas, and (ii) pancre-
atic neuroendocrine tumor (Pan-NET) which occurs in
the endocrine tissue of the pancreas and less common
[3]. MIAPaCa-2 and PANC-1 are two commonly used
cancer cell lines for studies of PA [4]. PA is usually ad-
vanced at the time of diagnosis as it is relatively
symptom-free [5]. With its poor prognosis, only 24% of
people survive 1 year and 9% live for 5 years [3].
Late disease diagnosis, attainment of resistant charac-

teristics, the paucity of effective therapies, and metastatic
nature among others are some of the proposed reasons
for the poor survival rate of PC patients [6]. Cytotoxic
treatments presently used have failed, example of such is
gemcitabine [7], with patients hardly survive more than
6 months after therapy, according to study [6]. 5-
Fluorouracil, however, has been shown to be effective
and boosts survival rate of patients [6]. In the last de-
cades, the repurposing of approved drugs to treat cancer
birthed drugs like celecoxib, metformin, sulindac, or Tri-
FluoroPerazine (TFP). Although, there are limitations as-
sociated with them, an instance with TFP is that patients
develop neurological side effects when it is used to treat
cancer [8].
Some compounds such as methyl protodioscin could in-

hibit proliferation and promote apoptosis of MIAPaCa-2
cells [9]. A small-molecule, trisubstituted naphthalene dii-
mide compound, is potent against PC cell line MIAPaCa-
2 [10]. Another compound is ursolic acid, a popular anti-
inflammatory and immunosuppressive agent which inhib-
ited growth and induced apoptosis in a dose-dependent
manner [11]. Due to this, the necessity of developing bet-
ter and more effective therapeutics with improved activity
at low concentrations that will ensure a longer survival
rate and inhibit resistance against the MIAPa-Ca cancer
cell lines cannot be overemphasized.
Quantitative structure activity relationship (QSAR) is one

of the commonest approaches in ligand-based drug design
process among Scaffold hopping, pseudo-receptor and
pharmacophore modeling. The key goal of QSAR studies is
to determine a mathematical model between the property
under investigation, and one or more molecular descriptors
[12–14]. Using the model, similar bioactivities of compounds
not involved in the training set can be predicted from their
structural descriptors [15]. Here, we used genetic function
approximation (GFA) and ELM models to predict the bio-
activity of the molecules under investigation.

ELM belongs to a class of feed forward neural net-
works characterized with a single hidden layer. The algo-
rithm attains its uniqueness through random
determination of the biases as well as the weights con-
necting hidden and input layers [16]. These features re-
sult into fast convergence, high training speed while the
simple structure of ELM algorithm is maintained and
thereby leads to enhanced computational efficiency
coupled with impressive robustness [17].
Molecular docking analyzes the pose of molecules into

the binding site of a macromolecular target and also
probe into the mechanisms of binding of bioactive com-
pounds and biological targets/receptors [3, 18, 19].
Therefore, this work is aimed at using QSAR to create a
mathematical model from the selected training set of 2-
alkoxycarbonylallyl esters derivatives (available in the lit-
erature) [20] to predict the activity of these compounds
as anticancer agents against MIAPaCa-2 cancer cell lines
and elucidate the interaction of these compounds as
MIAPaCa-2 cancer cell line inhibitor via molecular
docking studies.

Methods
QSAR Studies
Data collection
A series of twenty-four compounds of 2-alkoxycarbonylallyl
esters [20] as a potential anticancer were collected from the
literature. The curative activities of the compounds against
given in IC50 (μM) were converted into their corresponding
pIC50 values (i.e., - log IC50 = pIC50) in order to make the ac-
tivities fit to a range of values and also to suit normal distri-
bution curve. The experimental activities, pIC50 values, and
compounds are presented (Table 1).
The 2D structures of the compounds (Table 1) were

drawn using ChemDraw Ultra 12.0 [21] and then saved
as cdx file. The cdx file format of the compounds drawn
was moved to the Spartan 14 software [22] and opti-
mized using molecular mechanics with the molecular
mechanics force field (MMFF) to generate their most
stable conformers followed by a restricted hybrid Har-
tree Fock—density functional theory self-consistent field
(HF-DFT SCF) calculation using Pulay’s DIIS and geo-
metric direct minimization with the 6-31G* basis set
[23]. The molecular structures were saved as sdf file for-
mat after optimizing the structures.

Molecular descriptor calculation
The optimized compounds were subjected into PaDEL-
Descriptor software version 2.20 [24] in order to calcu-
late the 1D, 2D, and 3D descriptors of the compounds.
After removing salt, detecting tautomer and retaining
the file name as molecule name, a total of 1875 descrip-
tors were generated saved as Microsoft Excel Comma
Separated value (csv) file.
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Mathematical description of the proposed ELM algorithm
ELM formalisms allow three layers with connected neu-
rons. Pre-supposing that the number of neurons in the
output, hidden, and input layers are indicated by ξ,η and
μ, respectively with the threshold number of neurons for
the input layer set as I = [I1, I2, .…Iμ]

T. Equation 1 defines
the weights linking the hidden with input layer as repre-
sented by ψ while Eq. 2 presents the weights linking the
hidden with output layer is χ.

ψ ¼
ψ11 ψ12 … ψ1η
ψ21 ψ21 … ψ2η
: : : :

ψμ1 ψμ2 … ψμη

2
664

3
775
μxη

ð1Þ

χ ¼
χ11 χ12 … χ1ξ
χ21 χ21 … χ2ξ
: : : :

χμ1 χμ2 … χμξ

2
664

3
775
μxξ

ð2Þ

The experimental activities of the investigated com-
pounds as well as the implemented descriptors are pre-
sented in matrix form as depicted in Eq. 3 and Eq. 4,
respectively.

D ¼
d11 d12 … d1 j

d21 d21 … d2 j

: : : :
dμ1 dμ2 … dηj

2
664

3
775
ηxj

ð3Þ

A ¼
A11 A12 … A1 j

A21 A21 … Aj
: : : :

Aμ1 Aμ2 … Aμj

2
664

3
775
μxj

ð4Þ

where j is the number of training samples.
With inclusion of a differentiable activation function

γ(.)and network output α, the mathematical expression
representing the working principles of ELM algorithm is
presented in Eq. 5 [25, 26].

Pχ¼αT ð5Þ

Equations 6 and 7 respectively presents the matrix
form of hidden layer output (P) and network output.

P ¼
γ ψ1d1 þ I1ð Þ γ ψ2d1 þ I2ð Þ … γ ψμd1 þ Iμ

� �
γ ψ1d2 þ I1ð Þ γ ψ2d2 þ I2ð Þ … γ ψμd2 þ Iμ

� �
: : : :

γ ψ1d j þ I1
� �

γ ψ2d j þ I2
� �

… γ ψμd j þ Iμ
� �

2
66664

3
77775
jxμ

ð6Þ

α ¼ α1; α2; :…; α j
� �

μxj ð7Þ

Table 1 2-alkoxycarbonylallyl esters and their (pIC50)
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αk ¼
α1k
α2k
:

αμk

2
664

3
775

¼

Xμ
i¼1

λi1φ σkri þ zið Þ
Xμ
i¼1

λi2φ σkri þ zið Þ
:Xμ

i¼1

λiξφ σkri þ zið Þ

2
6666666664

3
7777777775
ξ

k ¼ 1; 2;…; jð Þ

Minimization of ‖Pχ − αT‖ yields Eq. 8.

χ¼PþαT ð8Þ

while P+stands for the Moore-penrose generalized in-
verse of P.

Computational details
QSAR methods
Normalization and data pre-treatment
The descriptors were normalized (Eq. 9) [27] and pre-
treated using the Data Pre-treatment software [28].

X ¼ X1 − Xmin

Xmax − Xmin
ð9Þ

where X1 is the descriptor’s value for each molecule,
Xmin and Xmax are minimum and maximum value for
each descriptor. This is done in order to filter descrip-
tors with redundant data, highly correlated data, reduce
colinearity thereby improving the performance of the
model.

Data division
The pre-treated dataset was split into training and test
sets by employing Kennard and Stone’s algorithm [29].
The training set, 70% of the data sets (16 compounds)
was used to build the model and validated internally
while 30% of the data sets (8 compounds) were used to
externally validate the built model.

Model development
Material studio 2017 software was used to build the
model employing the GFA method while fixing the bio-
logical activities (pIC50) as the dependent variable and
the physiochemical properties (descriptors) as the inde-
pendent variables.

Internal validation of model
The training compounds were validated internally using
material studio. The validation parameters include the
following:

Friedman’s lack of fit (LOF) The models generated
were appraised using LOF to obtain their fitness score
(Eq. 10) [30]

LOF ¼ SEE

ð1 − cþðd�pÞ
M Þ2

ð10Þ

SEE, the standard error of estimation; p, the number
of descriptors used; d is a user-defined smoothing par-
ameter, c is the number of model terms, and M is the
number of compound in the training set [31].
For a good model, SEE value must be low, it is given

as (Eq. 11):

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y exp − Y pred
� �2

n − p − 1

s
ð11Þ

where n is the number compounds that made up the
training set, Yexp is experimental activity and Ypred is
the predicted activity in the training set
The correlation coefficient (R2) This is the mostly used
for internal assessment of QSAR models. The R2

(Eq. 12) is expected to be very close to 1 to generate a
good model.

R2 ¼ 1 −

P
Y exp − Y pred
� �2P
Y exp − Y training
� �2 ð12Þ

where Ytraining is the mean of the experimental activity.

Adjusted (R2) (Eq. 13) value varies directly with the in-
crease in number of descriptors, it is important because
it measures the reliability and stability of a model unlike
R2.

R2
ad j ¼

ðR2 − pÞ � ðn − 1Þ
n − p − 1

ð13Þ

The cross validation coefficient ðQ2
cvÞ The strength of

the QSAR model was cross-validated (Eq. 14).

Q2
cv

� � ¼ 1 −

P
Y pred − Y exp
� �2P
Y exp − Y training
� �2

( )
ð14Þ

Where Ytraining, Yexp, and Ypred were defined earlier

External validation of the model The built model was
validated externally by the R2predicted value. The R2pre-
dicted value is the most commonly used parameter to val-
idate a built model. The R2

test is defined by (Eq. 15):
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R2 ¼ 1 −

P
Y predtest − Y exptest

� �2P
Y predtest − Y training
� �2 ð15Þ

Statistical analysis of the descriptor

Variance inflation factor VIF (Eq. 16) measures the
multicolinearity of the descriptors among each other
and also measures the degree at which one descriptor
correlates with the others in a model.

VIF ¼ 1

1 − R2 ð16Þ

R2 is the multiple correlation coefficient between all
variables used in the model. If the VIF = 1, it signifies
that there is no intercorrelation in each variable, and if it
is between 1 and 5, it is acceptable. VIF value > 10
makes the model unstable.

Mean effect This correlates the effect of a particular
molecular descriptor on the activities of the compounds.
A change in the descriptors’ values improves the activity
of the compounds. It is defined (Eq. 17):

Mean Effect ¼ Bj
Pn

i D jPm
j B j

Pn
i D j

� � ð17Þ

where Bj and Dj are the j-descriptor coefficient in the
model and the values of each descriptor in training set,
while m and n stand for the number of molecular de-
scriptors and number of molecules in a training set re-
spectively. Therefore, the mean effect of each descriptor
used in building the model was calculated to assess the
significance of the model [32].

Evaluation of the applicability domain of the model
This is a vital step in establishing that the model is good
to make predictions [33]. The leverage approach [34]
was applied here. Leverage of a given chemical com-
pound hi, is defined as (Eq. 18):

hi ¼ Xi X
TX

� � − 1
XT

i ð18Þ

Xi is the training compounds matrix of i. X is the m ×
k descriptor matrix of the training set compound and XT

is the transpose matrix of X used to build the model.
The warning leverage, h* (Eq. 19) is the limit of normal
values for X outliers:

h� ¼ 3
k þ 1ð Þ
n

ð19Þ

where n and k are the descriptors and the training set
compounds respectively.

Quality assurance of the model The validation param-
eters test the strength, dependability, and predictiveness
of a built-in QSAR model. Consequently, Table 2 estab-
lishes general minimum specifications for both internal
and external validation parameters to validate a QSAR
model [34]. The list of descriptors, their descriptions,
and dimension are presented (Table 3).

Table 3 List of descriptors, their constructors, description and
dimension used in building the QSAR model

S/
No

Name Description Dimension

1 ATSC3c Centered Broto-Moreau autocorrelation—
lag 3/weighted by charges

2D

2 MATS5p Moran autocorrelation—lag 5/weighted
by polarizabilities

2D

3 minHBint5 Minimum E-state descriptors of strength
for potential hydrogen bonds of path
length 5

2D

4 ETA_
Shape_P

Shape index P 2D

Table 2 Generally recommended values for the validation
parameters for a built model

Parameter Definition Recommended
value

R2 Coefficient of determination ≥0.6

P(95%) Confidence interval at 95% confidence
level

<0.05

Q2
cv

Cross validation coefficient ≥0.5

R2 -Q2
cv Difference between R2 and Q2

cv <0.3

N(ext & test

set)

Minimum number of external test set ≥5

cR2p Coefficient of determination for Y-
randomization

≥0.5
Fig. 1 Structure of the receptor, 3POZ
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ELM-based models
The modeling and simulation that leads to the develop-
ment of the proposed ELM-based models was imple-
mented on MATLAB. The descriptors to the model as
well as the experimental activities of the investigated
compounds were initially randomized prior to separation
into training and testing sets of data in the ratio of 4:1,
respectively. Randomization enhances even distribution
of data points and improves computational efficiency of

the algorithm. The training dataset was employed in
generating weights which are further validated using
testing set of data. The procedures for the computational
implementation of the proposed ELM-based models are
detained as follow:

Step I: Initial random number generation: Pseudo
random number that controls the randomly generated
biases as well as the weights linking the hidden with

Table 4 Comparison of experimental activity (pIC50), predicted activity (pIC50), and residual of developed model

S/No Experimental activity (pIC50) Predicted activity (pIC50) Residual

1 4.9115 4.9067 0.0048

2 4.0000 4.0070 −0.0070

5 4.4743 4.4012 0.0731

6a 4.2248 4.3582 −0.1334

7a 4.5452 4.4373 0.1078

8 4.6548 4.6486 0.0062

9a 4.3706 4.4557 −0.0852

10a 4.6185 4.5560 0.0625

11 4.5424 4.5056 0.0368

12a 4.0000 3.8942 0.1058

13 4.1748 4.1651 0.0097

14 4.0000 3.9974 0.0026

15 4.0000 4.0032 −0.0032

16 4.0000 3.9531 0.0469

17 4.1392 4.2393 −0.1002

18a 4.1395 3.9735 0.1660

19 4.1914 4.1859 0.0055

20a 4.0000 3.7604 0.2396

21 4.8573 4.8269 0.0304

22 5.4750 5.5102 −0.0353

23 5.3344 5.3283 0.0061

24 4.0786 4.0943 −0.0156

25a 4.0232 4.0193 0.0039

26 4.1232 4.1841 −0.0609
aTest set

Table 5 External validation of developed model

Name ATSC3c MATS5p minHBint5 ETA_Shape_P Yexptest Ypredtest

10 0.1896 −0.2790 0.0000 0.2778 4.6185 4.5560

12 0.0761 −0.0651 0.0000 0.1471 4.0000 3.8942

18 0.0244 −0.2706 0.0000 0.1471 4.1395 3.9735

20 0.0417 −0.2081 1.6445 0.1887 4.0000 3.7604

25 0.0817 −0.1618 0.0000 0.1613 4.0232 4.0193

6 0.1136 −0.2585 0.0000 0.2672 4.2248 4.3582

7 0.1352 −0.3068 0.0000 0.2609 4.5452 4.4373

9 0.1967 −0.3069 0.0000 0.1961 4.3706 4.4557
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input layers were initiated with the aid of seeding in
MATLAB.
Step II: Optimum activation function and
corresponding hidden nodes: One activation function
was selected after the other within a pool of functions
which include sine function, hardlim function, and
sigmoid function triangular basis function among
others. Hidden nodes were optimized within search
space of 1 to 100.
Step III: Computation of hidden layer output matrix:
Equation (6) was implemented on training dataset for
the calculation of the hidden layer output matrix.
Step IV: Output weight computation: with the aid of
the least square solution to the set of the generated
linear system of equations, the output weights were
computed.
Step V: Evaluation of the developed models: The
developed models during the training phase of the
simulation were evaluated using testing set of data. The
performance of the model was assessed using four
different performance measuring parameters which
include MAE, RMSE, CC, and MAPD. The models
characterized with lowest error (MAE, RMSE, and
MAPD) and highest CC was saved as the best models.
The hyper-parameters of the best model as well as the
weights were also saved for ensuring reproducibility of
the results.

Molecular docking and ADME/Tox screening
Protein and ligands preparation
The 3D crystal structure of an epidermal growth fac-
tor receptor (EGFR), a kinase domain (PDB ID:
3POZ) was downloaded from the protein data bank
(Fig. 1) [35]. The receptor has two ligands (O3P) and
sulfate ion (SO4) in its active sites [36]. The receptor
was chosen because it is an EGFR which best works
with cancer lines caused by cell proliferation and its
high resolution of 1.5 Å [36, 37]. The downloaded
protein was refined using the Protein Preparation
Wizard [37, 38] by assigning charges and bond orders
with the removal of water molecules and addition of
hydrogens to the heavy atoms. Energy minimization
was done using OPLS3 [38, 39].

Ligand preparation
The lead molecules (22 and 23) were selected for docking
and prepared using ligand preparation (ligprep) in Schrödin-
ger Suite 2017-1 with an OPLS3 force field [39] in order to
create three dimensional geometries and to assign proper
bond orders. Epik 2.2 in Schrödinger Suite at pH 7.0 ± 2.0
was used to generate the ionization state [40]. They, along-
side with a standard drug, chlorambucil were docked at the
active site of the receptor (x = 20.3785826772, y =
32.8299212598, and z = 14.8903149606).

Table 6 Calculation of the predicted R2 of developed model

Ypredtest − Yexptest Ypredtest − Yexptest Y training Ypredtest − Y training Ypredtest − Y training
2

−0.0625 0.0039 4.3699 0.2486 0.0618

−0.1058 0.0112 4.3699 −0.3699 0.1368

−0.1660 0.0276 4.3699 −0.2304 0.0531

−0.2396 0.0574 4.3699 −0.3699 0.1368

−0.0039 0.0000 4.3699 −0.3467 0.1202

0.1334 0.0178 4.3699 −0.1451 0.0210

−0.1078 0.0116 4.3699 0.1753 0.0307

0.0852 0.0073 4.3699 0.0007 0.0000

∑(Ypredtest − Yexptest)
2 = 0.1368P ðYpredtest − YtrainingÞ2 ¼ 0:5605

R2Pred ¼ 1 − 0:1368
0:5605 ¼ 0:7560

Table 7 Pearson’s correlation matrix, VIF and ME of the descriptors used in the built model

Descriptors ATSC3c MATS5p minHBint5 ETA_Shape_P VIF ME

ATSC3c 1 −0.5467 0.5262 0.1569 2.6933 0.3872

MATS5p −0.5467 1 0.0824 −0.2116 1.9799 0.2565

minHBint5 0.5262 0.0824 1 −0.0068 1.8967 −0.0886

ETA_Shape_P 0.1569 −0.2116 −0.0068 1 1.0506 0.4449
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ADME/Tox screening
The compounds were further screened for their drug-
likeness by calculating the absorption, distribution, me-
tabolism, excretion, and toxicity (ADME/Tox) properties
using the QikProp program [41]. These properties check
drug fitness and save cost involved in bioassay studies
[42]. Descriptors like molecular weight (Mw), number of
hydrogen bond donors (donorHB) and number of
hydrogen bond acceptors (acceptHB), solvent accessible
surface area (SASA), octanol/water partition coefficient
(QPlog Po/w), and value for serum protein binding
(QPlogKHsa) were considered (Table 11).

Results
QSAR results of 2-alkoxycarbonylallyl esters
A QSAR model was developed to predict the activity of
MIAPaCa-2 cancer cell lines in 2-alcoxycarbonylallyl es-
ters (pIC50). The multiple linear regression (MLR) for
the built model is shown in Eq. 20.

pIC50 ¼ ð2:115051910
� ATSC3cÞ − ð0:917421961
�MATS5pÞ − ð 0:160590092
�minHBint5Þ þ ð724494169
� ETAShapePÞ þ 3:419964012 ð20Þ

The list of descriptors, their constructors, description,
and dimension used in building the QSAR model are re-
ported in Table 3. Table 4 represents the comparison
between experimental activity (pIC50), predicted activity
(pIC50), and residual of the developed model which is
used in validating the model externally as reported in
Tables 5 and 6.
Table 7 presents the Pearson’s correlation, mean effect,

and variance inflation factor of the descriptors used in
building the model. The experimental activity is plotted
against the predicted activity for both training set, and
test set shown in Fig. 2. The scatter plot between stan-
dardized residual activity and experimental activity
which explains the randomness of the activities on both

Fig. 2 Predicted activity vs experimental activity for both training set and test set

Fig. 3 Standardized residual vs experimental activity pIC50
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negative and positive sides of y-axis is in Fig. 3. While
Fig. 4 presents the Williams plot of standardized residual
against leverages for the developed model.

Comparison of the estimates of developed QSAR and
ELM-based models
The performance of the developed ELM-based models
was compared with that of QSAR model using four dif-
ferent performance measuring parameters including
mean absolute error (MAE), root mean square error
(RMSE), correlation coefficient (CC), and mean absolute
percentage deviation (MAPD). The outcomes of the
comparison are presented in Table 9 and Fig. 5a-d. The
comparison of the outcomes of each of the developed
models with inclusion of percentage error for each of
the investigated compounds is presented in Table 10.

Molecular docking
Molecular docking studies were carried out to under-
stand the mechanism of action of some 2-

alkoxycarbonylallyl esters against pancreatic cancer
(MiaPaCa-2) cell line targeting the epidermal growth
factor receptor (EGFR). The structure of the prepared
receptor is shown in Fig. 1. The reference drug (chlor-
ambucil) and lead compounds (22 and 23) were docked
with the epidermal receptor growth factor (3POZ) to
elucidate the interaction and the binding mode. The
binding affinities and ADME/Tox properties of chloram-
bucil and the lead compounds (22 and 23) are presented
in Table 11. While the interactions between the epider-
mal receptor growth factor (3POZ) with the chlorambu-
cil and lead compounds (22 and 23) are presented
respectively in Figs. 5, 6, and 7.

Discussion
QSAR results of 2-alkoxycarbonylallyl esters
Four different models were generated using the genetic
function approximation technique. The first model was
selected to be the best model due to its statistical signifi-
cance and the fact that it satisfied the recommended
standard for a stable and reliable model as outlined
(Table 2).
2D descriptors played a vital role in predicting the activ-

ity of new molecules that can inhibit against MIAPaCa-2
cancer cell line. The positive coefficient of ATSC3c,
MATS5p, minHBint5, and ETA_Shape_P descriptors in
the model inferred that increase in the coefficient of the
descriptor will improve the activity (pIC50) of 2-alkoxy-
carbonylallyl esters against MIAPaCa-2 cancer cell line.

Fig. 4 Williams plot of standardized residual vs against leverages

Table 8 Validation parameter for the built model

S/N Validation parameter Value

1 Friedman LOF 0.010894

2 R-squared 0.992869

3 Adjusted R-squared 0.990276

4 Cross validated R-squared 0.987188

5 Significant Regression Yes

6 Significance-of-regression F value 382.902997

7 Critical SOR F value (95%) 3.403505

8 Replicate points 0

9 Computed experimental error 0

10 Lack-of-fit points 11

11 Min expt. error for non-significant LOF (95%) 0.035818

12 R2 pred 0.756016

Table 9 Performance comparison of the developed QSAR and
ELM-based models

MAE (pIC50) RMSE (pIC50) CC MAPD

QSAR 0.0562 0.0822 0.9831 1.323677

ELM-sine 0.0509 0.0689 0.9863 1.182579

ELM-sig 0.0489 0.0629 0.9887 1.127731
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Hence, to design potent compounds with high pIC50

value, the positive coefficient of the descriptors will have
to be increased.
The low values of residual recorded in Table 4 af-

firmed that there is high correlation between the experi-
mental activities and predicted activities. The value of
R2

pred (0.7560) signifies that the model has passed the
minimum recommended value for validating parameter
for a built model presented in Table 2. The idea that
once the R2

predicted value is considered satisfied, the
remaining parameters will also be satisfied is not always
true as additional statistical analyses can help validate
the built model such as variance inflation factor (VIF)
and mean effect (ME). The closer the value of R2test to
1.0, the better the stability the model generated. There-
fore, in prediction of the behavior of a new compound,
the stability will take into account model reliability.

The Pearson’s correlation, ME, and VIF of the descrip-
tors are presented in Table 7. The low correlation values
≤ 0.5 in most descriptors inferred that the descriptors do
not correlate with one another. This ascertains that
there is no bias in the prediction made by the model.
The mean effect of the descriptors shown in Table 7 sig-
nifies the effect of molecular descriptors on the activity
pIC50 of the compounds. Thus, the order of decreasing
effect is ETA_Shape_P > ATSC3c > MATS5p>
minHBint5.
The experimental activity was plotted against pre-

dicted activity for both training set and test set is re-
ported in Fig. 2. The high value of correlation coefficient
R2 for training set (0.9929) and test set (0.8397) con-
firmed that the model can successfully predict the activ-
ity of a new compound due to its correlation with the
experimental activity. The randomness of the activities

Fig. 5 Comparison of the performance of the developed models using (a) MAE, (b) RMSE, (c) CC, and (d) MAPD performance
measuring parameters
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on both negative and positive sides of y-axis shown on
the scatter plot between standardized residual activity
and the experimental activity reported in Fig. 3 con-
firmed the built model was free from systematic error.
To discover outliers and influential compounds in the
built model, the standardized residual activity for the en-
tire data set was plotted against the leverages. Williams
plot (Fig. 4) confirmed that there was only one influen-
tial compound (20) with leverage value of 1.00 which is
greater than the warning value (h= 0.9375).

Comparison of the estimates of developed QSAR and
ELM-based models
Using MAE metric, the ELM-Sig built model was more effi-
cient than ELM-Sine and QSAR models with a perform-
ance improvement of 4.09% and 14.92% respectively. The
model performed higher with a performance improvement
of 9.53% and 30.68% of the RMSE performance assessment
parameter respectively. For CC and MAPD metrics, the de-
veloped ELM-Sig model performed better than ELM-Sine
and QSAR models with performance enhancement of

Table 10 Comparison of the estimates of the developed models

S/N Experimental
activity (pIC50)

QSAR predicted activity
(pIC50) (this work)

%error ELM-Sine predicted activity
(pIC50) (this work)

%
Error

ELM-Sig predicted activity
(pIC50) (this work)

%
Error

1 4.9115 4.9067 0.0977 4.9385 0.5493 4.8448 1.3589

2 4.0000 4.0070 0.1750 3.9999 0.0019 3.9996 0.0106

5 4.4743 4.4012 1.6338 4.4120 1.3919 4.3969 1.7295

6 4.2248 4.3582 3.1575 4.3714 3.4692 4.3472 2.8982

7 4.5452 4.4373 2.3739 4.4601 1.8727 4.4277 2.5852

8 4.6548 4.6486 0.1332 4.6534 0.0291 4.6555 0.0148

9 4.3706 4.4557 1.9471 4.5178 3.3690 4.4533 1.8923

10 4.6185 4.5560 1.3533 4.5696 1.0597 4.5461 1.5679

11 4.5424 4.5056 0.8101 4.5379 0.0996 4.4983 0.9703

12 4.0000 3.8942 2.6450 3.9358 1.6052 3.9817 0.4565

13 4.1748 4.1651 0.2323 4.2014 0.6378 4.1751 0.0065

14 4.0000 3.9974 0.0650 4.0626 1.5646 4.0472 1.1800

15 4.0000 4.0032 0.0800 4.0157 0.3930 4.0405 1.0118

16 4.0000 3.9531 1.1725 3.9822 0.4460 3.9595 1.0130

17 4.1392 4.2393 2.4183 4.2094 1.6951 4.2496 2.6660

18 4.1395 3.9735 4.0101 3.9754 3.9637 4.0114 3.0952

19 4.1914 4.1859 0.1312 4.1513 0.9557 4.1897 0.0408

20 4.0000 3.7604 5.9900 3.9952 0.1190 4.0102 0.2543

21 4.8573 4.8269 0.6259 4.8418 0.3188 4.8159 0.8514

22 5.4750 5.5102 0.6429 5.4205 0.9955 5.4652 0.1781

23 5.3344 5.3283 0.1144 5.3572 0.4279 5.3681 0.6321

24 4.0786 4.0943 0.3849 4.0783 0.0063 4.1023 0.5817

25 4.0232 4.0193 0.0969 4.1032 1.9879 4.0618 0.9585

26 4.1232 4.1841 1.4770 4.1819 1.4232 4.1691 1.1120

MAPD 1.3237 1.1826 1.1277

Table 11 Binding affinities and ADME/Tox properties of some of the lead molecules and chlorambucil

Molecules Binding energy (kcalmol−1) Mw SASA donorHB accptHB QPlogPo/w

22 −6.327 363 604 0 9 1.34

23 −7.232 504 877 0 12 1.92

Chlorambucil −5.826 304 581 1 3 4.60
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Fig. 6 Compound 22 with 3POZ

Fig. 7 Compound 23 with 3POZ
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0.24% and 0.57% as well as 4.86% and 17.38%, respectively.
The developed ELM-Sine model also performed better than
QSAR-based model with improved performance of 10.41%,
19.30%, 0.33%, and 11.93%, respectively using MAE, RMSE,
CC, and MAPD as performance measuring parameters.
From Table 10, the results of the developed ELM-sig

model show persistence closeness with the measured
values. The superiority of the developed ELM-based
model over the QSAR model can be attributed to the in-
trinsic feature of ELM algorithm in approximating non-
linear and complex relationship linking the descriptors
to the target. Ability of sigmoid activation function to
approximate well is reveled from the performance of
ELM-Sig model over that of ELM-Sine model.

Molecular docking
The lead compounds (22 and 23) showed good docking
score in the receptor’s active sites and are better than chlor-
ambucil, a standard drug (Table 11). Compound 22 (−6.327
kcalmol−1) showed conventional hydrogen bond with CYT
737 and ASP 855 from its carbonyl oxygen from the α-ester
group (Fig. 5). Compound 23 (−7.232 kcalmol−1) also showed
conventional hydrogen bond with ASP 855 from its carbonyl

oxygen from the α-ester group (Fig. 6). Chlorambucil
(−5.826 kcalmol−1) showed no conventional hydrogen bond
with any of the amino acid groups (Fig. 7). The lead mole-
cules have better activity than chlorambucil as reported by
Conor et al. [20]; the bonds responsible for their bioactivity
according are the double bond and the α-ester groups. The
ADME/Tox properties (Table 11) showed that these com-
pounds are fit as drugs, according to Lipinski’s rule of five
[19, 43, 44].

Conclusion
In this study, a GFA model, together with two EML models
were used to predict the potential activity of 2-
alkoxycarbonylallyl esters as anticancer against MIAPaCa-2
pancreatic cancer cell lines while also probing into the mech-
anisms of interaction of the lead compounds against an epi-
dermal growth factor receptor kinase domain, 3POZ via
molecular docking approach. The GFA model generated was
thoroughly validated; this model was compared to with
ELM-Sig model and ELM-Sine model, with the ELM-Sig
model proving the best in bioactivity prediction of these mol-
ecules. Binding of the lead compounds with the receptor
showed they had better inhibitory potentials than

Fig. 8 Chlorambucil with 3POZ
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chlorambucil. In the 2D interaction diagrams, it was seen
that the compounds bind to the receptor predominantly
through the hydrogen bond interaction and also mainly the
carbonyl oxygen atoms of the α-esther group were respon-
sible for their interaction, which is in line with what was ob-
served in the experiment.
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